ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:823.50KB ,
资源ID:3790952      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3790952.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(行测数字推理八大解题技巧讲课教案.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

行测数字推理八大解题技巧讲课教案.doc

1、行测数字推理八大解题技巧精品资料数字推理八大解题方法【真题精析】例1.2,5,8,11,14,( )A15 B16 C17 D18答案C解析数列特征明显单调且倍数关系不明显,优先采用逐差法。差值数列是常数列。如图所示,因此,选C。【真题精析】例1、(2006国考A类)102,96,108,84,132,( )A36 B64 C70 D72答案A解析数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。差值数列是公比为-2的等比数列。如图所示,因此,选A。【真题精析】 例1.(2009江西)160,80,40,20,( )A B1 C10 D5答案C解析数列特征明显单调且倍数关系

2、明显,优先采用逐商法。商值数列是常数列。如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( ) A214 B275 C312 D336答案B解析数列特征明显单调且倍数关系明显,优先采用逐商法。商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。如图所示,因此,选B。【真题精析】例1、(2009福建)7,21,14,21,63,( ),63A35 B42 C40 D56答案B解析数列特征明显单调且倍数关系明显,优先采用逐商法。商值数列是以 为周期的周期数列。如图所示,因此,选B。【真题精析】例1 8,8,12,24,60,( )A90 B120 C180 D240答

3、案C解析逐商法,做商后商值数列是公差为0.5的等差数列。【真题精析】例1. -3,3,0,3,3,( )A6 B7 C8 D9答案A解析数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。优先采用加和法。【真题精析】例1、(2008湖北B类)2,3,5,10,20,( )A30 B35 C 40 D45答案C解析数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。还是无明显规律。再仔细观察发现,2+3=5,2+3+5=10,2+3+5+10=20。因此原数列未知项为2+3+5+10

4、+20=40。此数列为全项和数列,其规律为:前面所有项相加得后一项。如图所示,因此,选C。【真题精析】例1、 1,2,2,4,8,32,( ) A64 B128 C160 D256答案D解析数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。【真题精析】例1、1,1,2,2,4,16,( ) A32 B64 C128 D256答案C解析数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。积后无明显规律,尝试三项求积。即从第四项起,每一项都是前面三项的乘积。因此,选C。【真题精析】例1、(2008河北)1,2,2,4,16,( ) A64 B128

5、 C160 D256答案D解析数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。 做积后无明显规律。仔细观察发现,12=2,122=4,1224=16,122416=(256)。此数列是全项积数列,从第三项起,每一项都是前面所有项的乘积。因此,选D。【真题精析】例1. (2007国考)0,2,10,30,( )A68 B74 C60 D70答案A解析数列项数较少,做一次差后无明显规律,不能继续做差,因此考虑使用因数分解将原数列化为如下形式:分别观察由0,1,2,3和1,2,5,10组成的数列,前者是公差为1的等差数列,后者做一次差后得到奇数数列,推断其第五项分

6、别为4和17,故所填数字应为4X17=68,答案为A。【真题精析】例1. 1,2,5,10,17,( ) A24 B25 C26 D27答案C解析此题的突破口建立在“数字敏感”的基础之上。由数字5,10,17,联想到5=4+1,10=9+1, 17=16+1,故可以判定此数列由多次方数构造而成。平方数列的底数是自然数列。如上所示,因此,选C。【真题精析】例1. (2009天津)187,259,448,583,754,( ) A847 B862 C915 D944答案B解析原数列单调关系明显,倍数关系不明显,优先使用逐差法无明显规律;观察数列特征:多位数连续出现,幅度变化无明显规律,考虑位数拆分

7、。对原数列各数位进行求和:1+8+7=16,2+5+9=16,4+4+8=16,5+8+3=16,7+5+4=16,(8+6+2=16),原数列中所有项各位数字相加之和为16。因此,选B。【真题精析】例1.答案A解析数列中大部分为非最简分数,优先考虑将其约分变为最简分数。得到常数列。如上所示,因此,选A。【真题精析】例1、答案A解析数列中有两项的分母相同,且为另外两项的倍数。因此,先进行通分将各项的分母统一为12。得到的分子数列为质数列。如上所示,因此,选A。【真题精析】例1、答案B解析数列特征不明显,由联想到中间的2可化成。此时,各项的分子分母表现出一定的单调性,因此考虑将反约分化为。根据该

8、思路,将原数列进行变形。分子数列、分母数列都是自然数列。如上所示,因此,选B。【真题精析】例1、答案C解析分别分析各项的整数部分与分数部分。整数部分为平方数列,分数部分是公比为的等比数列,如上所示,故未知项为81+1=82,因此,选C。【真题精析】例1、答案C解析数列的二、三、六项分别出现, 因此考虑将一、四项拆分出带有根号的式子。【真题精析】例1. (2010江西)3,3,4,5,7,7,11,9,( ),( )A13,11 B16,12 C18,11 D17,13答案C解析数列较长,数字变化幅度不大,并且有两个未知项,优先进行交叉分组。【真题精析】例1、 (2007河北)1,2,2,6,3

9、,15,3,21,4,( )A46 B20 C12答案D解析数列不具有单调性,变化幅度不大且数列较长,优先使用多元素分组法。由于相邻两项之间具有明显的倍数关系,故考虑两两分组。得到质数列。如图所示,因此,选D。【真题精析】例1、8,6,10,11,12,7,( ),24,28 A15 B14 C9 D18答案B解析数列单调关系和倍数关系均不明显,变化幅度不大,项数较多,优先采用多元素分组法。交叉及分段分组都没有明显的规律,尝试采用对称分组法。对称分组后组内求和,得到公差为6的等差数列。如图所示,因此,选B。【真题精析】例1、1,2,3,7,16,( ) A66 B65 C64 D63答案B解析

10、基于“数形敏感”,由数列的三、四、五项可以得出 。经过验证有:2,故该数列的通项为 因此,所填数字为 ,答案为B。【真题精析】例1、2,12,36,80,( )A100 B125 C150 D175答案C解析基于“数字敏感”,数列的第四项80可以拆分成,第三项可以拆分成36=,基于“数列敏感”,可以推测数列是由平方数列和立方数列相加得到,经过验证有2=1+1,故数列的通项公式为。因此,所求数字为150,答案选C。【真题精析】例1、6,12,36,102,( ),3A24 B71 C38 D175答案A解析数列各项都可以被3整除。数字推理技巧总结(简单精辟!)2008-10-11 17:21数字

11、推理技巧总结: 备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。如7,11,16,22,( 29 ) (3) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。如7,11,13,14,( 14.5 ) (4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。【例题】7,11,6,12,(

12、 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。 【例题】7,11,16,10,3,11,(20 ) 备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。 【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。 【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,( 4

13、096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。 【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。 【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,(36 )(2) 每一个平方数减去或加上一个常数 【例题】0,3,8,15,24,(35 ) 【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身

14、就是有一定规律的。【例题】2,6,12,20,30,(42 )备考规律四:“立方数”数列及其变式(an=n3+d,其中d为常数或存在一定规律)(1)“立方数”的数列【例题】8,27,64,( 125 )(2)“立方数”的数列,其规律是每一个立方数减去或加上一个常数【例题】7,26,63,(124 )【例题变形】9,28,65,( 126 ) (3)每一个立方数加去一个数值,而这个数值本身就是有一定规律的。【例题】9,29,67,( 129 )备考规律五:求和相加、求差相减、求积相乘、求商相除式的数列(第三项等于第一项与第二项的运算结果,或者相差一个常量,或者相差一定的规律)第一项与第二项相加等

15、于第三项【例题】56,63,119,182,(301)第一项减去第二项等于第三项【例题】8,5,3,2,1,( 1 )第一项与第二项相乘等于第三项【例题】3,6,18,108,(1944)第一项除以第二项等于第三项【例题】800,40,20,2,(10)备考规律六:“隔项”数列(1) 相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。【例题】1,4,3,9,5,16,7,( 25 )备考规律七:混合式数列【例题】1,4,3,8,5,16,7,32,( 9 ),( 64 )将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。所以大家还是认真

16、总结这类题型。【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,( 9 ),( 64 ),( 36 )1.数字推理 数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。 在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确

17、的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。 两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。 由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。 需要说明一点:

18、近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。 此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。 在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。 2.数

19、学运算 数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。 数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。 二、解题技巧及规律总结 数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关

20、系分为两大类: 一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律: 1、 相邻两个数加、减、乘、除等于第三数 2、 相邻两个数加、减、乘、除后再加或者减一个常数等于第三数 3、 等差数列:数列中各个数字成等差数列 4、 二级等差:数列中相邻两个数相减后的差值成等差数列 5、 等比数列 :数列中相邻两个数的比值相等 6、 二级等比:数列中相邻两个数相减后的差值成等比数列 7、 前一个数的平方等于第二个数 8、 前一个数的平方再加或者减一个常数等于第二个数; 9、 前一个数乘一个倍数加减一个常数等于第二个数; 10、 隔项数列:数列相隔两项呈现一定规律, 1

21、1、 全奇 、全偶数列 12、 排序数列 二、数列中每一个数字本身构成特点形成各个数字之间的规律。 1、 数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成 2、 每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n 3、 数列中每一个数字都是n的倍数加减一个常数 以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢? 这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。 第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答

22、第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。 第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。 当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案一、看特征,做试探。首先观察数列的项数,如果项数比较长,或有两项是括号项,可考虑虑奇、偶项数列和两两分组数列。例如:25,23,27,25,29,27(奇、偶项数列) 其次观察数列的数字特点,注意各项数字是否为整数的平方或立方,或是与它们左右相

23、邻或相近的数字,如果是,则可考虑平方数列或立方数列。例如:2,5,10,17,26(数列各项减1得一平方数列)再次观察数列数字间的变化幅度的大小,如果前几项较小,末项却突然增大数倍,则此是可考虑等比数列;如果数列的起伏不大,变化幅度小且逐渐递增或递减,则可考虑等差数列。例如:4,8,16,32,64,128(等比数列)3,5,8,12,17(二级等差数列)如果数列内有多项分数或者根式,则一般需要将其余项均化为分数或者根式。二、单数字发散。即从题目中所给出的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。分解发散。针对某个数,联系其各个因子(即约数)及其因子的表示形式(包括幂次形式、阶乘形式等),牢记典型质数与“典型形似质数”的分解方式。相邻发散。针对某个数,联系与其相邻的各个具有典型特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思想。例如:题目中出现了数字26,则从26出发我们可以联想到:三、多数字联系。即从题目中所给的某些数字组合出发,寻找之间的联系,从而找到解析例题的“灵感的思维方式”。多数字联系的基本思路:把握数字之间的共性;把握数字之间的递推关系。例如:题目出现了数字1、4、9,则从1、4、9出发我们可以联想到:仅供学习与交流,如有侵权请联系网站删除 谢谢25

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服