ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:1.49MB ,
资源ID:3787636      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3787636.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(大学物理下练习试卷及答案word版本.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

大学物理下练习试卷及答案word版本.doc

1、此文档仅供收集于网络,如有侵权请联系网站删除1 宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。解:建立如图所示的坐标系,在导体上取宽度为dy窄条作为电流元,其电流为(1)电流元在M点的磁感强度大小为方向如图所示M点的磁感强度大小为磁感强度方向沿x轴负方向。(2)电流元在N点的磁感强度大小为根据电流分布的对称性,N点的总的磁感强度沿y由方向。N点的磁感强度大小为磁感强度方向沿轴正方向。2 两根长直导线沿半径方向引到铁环上的A、B

2、两点,并与很远的电源相连,如图所示,求环中心O的磁感应强度。解:设两段铁环的电阻分别为R1和R2,则通过这两段铁环的电流分别为,两段铁环的电流在O点处激发的磁感强度大小分别为根据电阻定律可知 所以 O点处的磁感强度大小为 3 在半径R=1cm的无限长半圆柱形金属薄片中,有电流I=5A自下而上通过,如图所示,试求圆柱轴线上一点P的磁感应强度。解:在处取平行于电流的宽度为的窄条作为电流元,其电流大小为电流元在P点处激发的磁感强度大小为由于电流分布的对称性,P的磁感强度大小方向沿x轴正方向。4 一个塑料圆盘,半径为R,电荷q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为。求圆盘中心处的磁感

3、应强度。解:在圆盘上取半径为r、宽度为dr的同心圆环,其带电量为圆环上的电流为dI在圆心处激发的磁感强度大小为圆盘中心处的磁感强度大小方向垂直于纸面。5 两平行长直导线相距d=40cm,通过导线的电流I1=I2=20A,电流流向如图所示。求(1)两导线所在平面内与两导线等距的一点P处的磁感应强度。(2)通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。解:(1)两导线电流的P点激发的磁感强度分别为,P点的磁感强度为方向垂直于纸面向外。(2)在矩形面上,距离左边导线电流为r处取长度为l宽度为dr的矩形面元,电流I1激发的磁场,通过矩形面元的磁通量为电流激发的磁场,通过矩形面积的

4、磁通量为同理可得,通过矩形面积的磁通量为6 在半径为R的无限长金属圆柱体内部挖去一半径为r的无限长圆柱体,两柱体的轴线平行,相距为d,如图所示。今有电流沿空心柱体的轴线方向流动,电流I均匀分布在空心柱体的截面上。分别求圆柱轴线上和空心部分轴线上、点的磁感应强度大小。解:(a)设金属圆柱体在挖去小圆柱前在o、o处激发的磁感强度由安培环路定理求得(b)设被挖去小圆柱在、处激发的磁感强度大小分别为和根据安培环路定理,得 (c)挖去小圆柱后在、处的磁感强度大小分别为,1 在电视显象管的电子束中,电子能量为12000eV,这个显象管的取向使电子水平地由南向北运动。该处地球磁场的竖直分量向下,大小为T。问

5、(1)电子束受地磁场的影响将偏向什么方向?(2)电子的加速度是多少?(3)电子束在显象管内在南北方向上通过20cm时将偏移多远?解:(1)电子的运动速度为,(偏向东)。(2)电子受到的洛仑兹力大小为电子作匀速圆周运动,其加速度大小为(3) 匀速圆周运动半径为 2 在霍耳效应实验中,宽1.0cm、长4.0cm、厚cm的导体沿长度方向载有30mA的电流,当磁感应强度大小B=1.5T的磁场垂直地通过该薄导体时,产生V的霍耳电压(在宽度两端)。试由这些数据求:(1)载流子的漂移速度;(2)每立方厘米的载流子数;(3)假设载流子是电子,画出霍耳电压的极性。解:(1),(2) (3) 霍耳电压的极性如图所

6、示。3 截面积为S、密度为的铜导线被弯成正方形的三边,可以绕水平轴转动,如图所示。导线放在方向竖直向上的匀强磁场中,当导线中的电流为I时,导线离开原来的竖直位置偏转一个角度而平衡。求磁感应强度。若S=2mm2,=8.9g/cm3,=15,I=10A,磁感应强度大小为多少?解:磁场力的力矩为重力的力矩为由平衡条件 ,得4. 半径为R=0.1m的半圆形闭合线圈,载有电流I=10A,放在均匀磁场中,磁场方向与线圈平面平行,如图所示。已知B=0.5T,求线圈所受力矩的大小和方向(以直径为转轴);解:由线圈磁矩公式方向沿直径向上。1 如图所示,在纸面所在平面内有一根通有电流为I的无限长直导线,其旁边有一

7、个边长为l的等边三角形线圈ACD,该线圈的AC边与长直导线距离最近且相互平行,今使线圈ACD在纸面内以匀速远离长直导线运动,且与长直导线相垂直。求当线圈AC边与长直导线相距为a时,线圈ACD内的动生电动势。解:通过线圈ACD的磁通量为由于,所以,线圈ACD内的动生电动势为2 如图所示,无限长直导线中电流为i,矩形导线框abcd与长直导线共面,且ad/AB,dc边固定,ab边沿da及cb以速度无摩擦地匀速平动,设线框自感忽略不计,t=0时,ab边与dc边重合。(1)如i=I0,I0为常量,求ab中的感应电动势,ab两点哪点电势高?(2)如,求线框中的总感应电动势。解:通过线圈abcd的磁通量为(

8、1)由于,所以,ab中感应电动势为由楞次定律可知,ab中感应电动势方向由b指向a,即a点为高电势。(2)由于和,所以,ab中感应电动势为3 如图所示,AB和CD为两根金属棒,长度l都是1m,电阻R都是4W,放置在均匀磁场中,已知磁场的磁感应强度B=2T,方向垂直于纸面向里。当两根金属棒在导轨上分别以v1=4m/s和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求(1)两金属棒中各自的动生电动势的大小和方向,并在图上标出方向;(2)金属棒两端的电势差UAB和UCD;(3)金属棒中点O1和O2之间的电势差。解:(1),方向AB,方向CD(2)(3) , 4 有一个三角形闭合导线,如图放置。在这

9、三角形区域中的磁感应强度为,式中和a是常量,为z轴方向单位矢量,求导线中的感生电动势。解:,逆时针方向。5 要从真空仪器的金属部件上清除出气体,可以利用感应加热的方法。如图所示,设线圈长l=20cm,匝数N=30匝(把线圈近似看作是无限长密绕的),线圈中的高频电流为,其中I0=25A,频率f=105Hz,被加热的是电子管阳极,它是半径r=4mm而管壁极薄的空圆筒,高度hR,已知,k为大于零的常量,求长直导线中的感应电动势的大小和方向。解:连接OM和ON,回路OMNO的电动势为 反时针方向。MN中的电动势等于回路OMNO的电动势,即。 方向MN。1 一截面为长方形的螺绕环,其尺寸如图所示,共有N

10、匝,求此螺绕环的自感。解:由于,所以 2 一圆形线圈A由50匝细线绕成,其面积为4cm2,放在另一个匝数等于100匝、半径为20cm的圆形线圈B的中心,两线圈同轴,设线圈B中的电流在线圈A所在处激发的磁场可看作均匀的。求(1)两线圈的互感;(2)当线圈B中的电流以50A/s的变化率减小时,线圈A内的磁通量的变化率;(3)线圈A中的感生电动势。解:(1)B线圈在中心激发的磁感强度为 A线圈的磁通量为 两线圈的互感为(2) (3) 3 一矩形线圈长l=20cm,宽b=10cm,由100匝导线绕成,放置在无限长直导线旁边,并和直导线在同一平面内,该直导线是一个闭合回路的一部分,其余部分离线圈很远,其

11、影响可略去不计。求图(a)、图(b)两种情况下,线圈与长直导线间的互感。解:设无限长直导线的通有电流I。(1)图(a)中面元处的磁感强度为 通过矩形线圈的磁通连为线圈与长直导线间的互感为(2)图(b)中通过矩形线圈的磁通连为零,所以 4 有一段10号铜线,直径为2.54mm,单位长度的电阻为,在这铜线上载有10A的电流,试计算:(1)铜线表面处的磁能密度有多大?(2)该处的电能密度是多少?解:(1) ,(2)1 作简谐振动的小球,速度最大值为um=3cm/s,振幅A=2cm,若从速度为正的最大值的某点开始计算时间,(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。解:(1)(2

12、)(3), , SI2 如图所示,轻质弹簧的一端固定,另一端系一轻绳,轻绳绕过滑轮连接一质量为m的物体,绳在轮上不打滑,使物体上下自由振动。已知弹簧的劲度系数为k,滑轮的半径为R,转动惯量为J。(1)证明物体作简谐振动;(2)求物体的振动周期;(3)设t=0时,弹簧无伸缩,物体也无初速,写出物体的振动表式。解:取平衡位置为坐标原点。设系统处于平衡位置时,弹簧的伸长为l0,则(1) 物体处于任意位置x时,速度为u,加速度为a。分别写出弹簧、物体和滑轮的动力学方程 由以上四式,得 ,或可见物体作简谐振动。(2)其角频率和周期分别为 ,(3)由初始条件,x0=Acosj0= -l,u0=-Awsin

13、j0=0,得 , 简谐振动的表达式为 3 一质量为M的盘子系于竖直悬挂的轻弹簧下端,弹簧的劲度系数为k。现有一质量为m的物体自离盘h高处自由下落,掉在盘上没有反弹,以物体掉在盘上的瞬时作为计时起点,求盘子的振动表式。(取物体掉入盘子后的平衡位置为坐标原点,位移以向下为正。)解:与M碰撞前,物体m的速度为 由动量守恒定律,碰撞后的速度为 碰撞点离开平衡位置距离为 碰撞后,物体系统作简谐振动,振动角频率为由简谐振动的初始条件,得振动表式为4 一弹簧振子作简谐振动,振幅A=0.20m,如弹簧的劲度系数k=2.0N/m,所系物体的质量m=0.50kg,试求:(1)当动能和势能相等时,物体的位移是多少?

14、(2)设t=0时,物体在正最大位移处,达到动能和势能相等处所需的时间是多少?(在一个周期内。)解:(1)由题意,及简谐振动特征,得 (2)由条件,得 , 5 有两个同方向、同频率的简谐振动,它们的振动表式为:,(SI制)(1)求它们合成振动的振幅和初相位。(2)若另有一振动,问为何值时,的振幅为最大;为何值时,的振幅为最小。解:根据题意,画出旋转矢量图(1)(2)。1 一横波沿绳子传播时的波动表式为(SI制)。(1)求此波的振幅、波速、频率和波长。(2)求绳子上各质点振动的最大速度和最大加速度。(3)求x=0.2m处的质点在t=1s时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1

15、s、1.25s、1.50s各时刻的波形。解:(1)(2) (3) (4) t=1s时波形曲线方程为 t=1.25s时波形曲线方程为 t=1.50s时波形曲线方程为 2 一平面简谐波在介质中以速度u=20m/s沿轴负方向传播,已知点的振动表式为(SI制)。(1)以为坐标原点写出波动表式。(2)以距点5m处的点为坐标原点,写出波动表式。解:(1) (2) 3 一列沿正向传播的简谐波,已知和时的波形如图所示。(假设周期)试求(1)点的振动表式;(2)此波的波动表式;(3)画出点的振动曲线。(1) P点的振动表式为 (2) 波动表式为 (3) O点的振动表式为 1 设和为两相干波源,相距,的相位比的相

16、位超前。若两波在与连线方向上的强度相同均为,且不随距离变化,求与连线上在外侧各点的合成波的强度和在外侧各点的强度。解:P1: , P2: , 2 地面上波源与高频率波探测器之间的距离为,从直接发出的波与从发出经高度为的水平层反射后的波在处加强,反射波及入射波的传播方向与水平层所成的角度相同。当水平层逐渐升高距离时,在处测不到讯号,不考虑大气的吸收,求此波源发出波的波长。解:在H高反射时,波程为r1,在H+h高反射时,波程为r2,根据题意 , 1 用很薄的云母片(n=1.58)覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹的位置上。如果入射光波长为550nm,试问此云母

17、片的厚度为多少?解:设云母的厚度为l。有云母时,光程差为 , x=0处的光程差为 x=0处为第k=7级明纹时 2 在双缝干涉实验装置中,屏幕到双缝的距离D远大于双缝之间的距离d,对于钠黄光(nm),产生的干涉条纹,相邻两明条纹的角距离(即相邻两明条纹对双缝处的张角)为。(1)对于什么波长的光,这个双缝装置所得相邻两条纹的角距离比用钠黄光测得的角距离大10%?(2)假想将此装置浸入水中(水的折射率n=1.33),用钠黄光垂直照射时,相邻两明条纹的角距离有多大?解:(1) ,(2) , 3 一射电望远镜的天线设在湖岸上,距湖面的高度为h,对岸地平线上方有一恒星刚在升起,恒星发出波长为的电磁波。试求

18、,当天线测得第一级干涉极大时恒星所在的角位置(提示:作为洛埃镜干涉分析)。解: , 光程差为:,则 , ,4 利用劈尖的等厚干涉条纹可以测得很小的角度。今在很薄的劈尖玻璃板上,垂直地射入波长为589.3nm的钠光,相邻暗条纹间距离为5.0nm,玻璃的折射率为1.52,求此劈尖的夹角。解:,5 柱面平凹透镜A,曲率半径为R,放在平玻璃片B上,如图所示。现用波长为的平行单色光自上方垂直往下照射,观察A和B间空气薄膜的反射光的干涉条纹。设空气膜的最大厚度。(1)求明条纹极大位置与凹透镜中心线的距离r;(2)共能看到多少条明条纹;(3)若将玻璃片B向下平移,条纹如何移动?解: k=1,2,3明纹极大

19、k=0,1,2,3 暗纹极小(1) k=1,2,3 明纹极大 k=0,1,2,3 暗纹极小(2) , 明纹:得, 暗纹:得, , 明纹数为(3) 由中心向外侧移动12T1T2l1 常用雅敏干涉仪来测定气体在各种温度和压力下的折射率。干涉仪的光路如图。S为光源,L为聚光透镜,G1、G2为两块等厚而且互相平行的玻璃板,T1、T2为等长的两个玻璃管,长度为l。进行测量时,先将T1、T2抽成真空,然后将待测气体徐徐导入一管中。在E处观察干涉条纹的变化,即可求出待测气体的折射率。某次测量时,将气体徐徐放入T2管直到气体达到标准状态,在E处看到有98条干涉条纹移过。所用入射光波长为589.3nm,l=20

20、cm,求该气体在标准状态下的折射率。解:2 利用迈克尔孙干涉仪可以测量光的波长。在一次实验中,观察到干涉条纹,当推进可动反射镜时,可看到条纹在视场中移动。当可动反射镜被推进0.187mm时,在视场中某定点共通过了635条暗纹。试由此求所用入射光的波长。解: , 3 有一单缝,宽a0.10mm,在缝后放一焦距为50cm的会聚透镜,用平行绿光(=546.0nm)垂直照射单缝,试求位于透镜焦面处屏幕上中央明纹及第二级明纹的宽度。解:中央明纹宽度:第二级明纹宽度:4 波长为的单色平行光沿与单缝衍射屏成角的方向入射到宽度为a的单狭缝上,试求各级衍射极小的衍射角值。解:5 用波长=400nm和=700nm

21、的混合光垂直照射单缝,在衍射图样中的第k1级明纹中心位置恰与的第k2级暗纹中心位置重合。求k1和k2。解: , , 即:6 在复色光照射下的单缝衍射图样中,其中某一未知波长光的第三级明纹极大位置恰与波长为=600nm光的第二级明纹极大位置重合,求这种光波的波长。解:1 光栅宽为2cm,共有6000条缝。如果用钠光(589.3nm)垂直照射,在哪些角度出现光强极大?如钠光与光栅的法线方向成30角入射,试问:光栅光谱线将有什么变化?解:(1)由光栅方程 ,得,取, , , , , , ,(2)光栅谱线还是11条,但不对称分布2 波长600nm的单色光垂直照射在光栅上,第二级明条纹分别出现在sin=

22、0.20处,第四级缺级。试求: 光栅常数(a+b)。 光栅上狭缝可能的最小宽度a。 按上述选定的a、b值,在光屏上可能观察到的全部级数。解:(1)(2) , , (3) , 全部级数为。 3 波长为500nm的单色光,垂直入射到光栅,如果要求第一级谱线的衍射角为,光栅每毫米应刻几条线?如果单色光不纯,波长在0.5范围内变化,则相应的衍射角变化范围如何?又如果光栅上下移动而保持光源不动,衍射角又何变化?解:(1) 每毫米1000条。(2)由光栅方程及其微分得(3) 不变1 铝的逸出功为4.2eV,今用波长为200nm的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?遏止电势差为多少?铝的红

23、限波长是多少?解:由爱因斯坦方程,得发射的光电子的最大初动能为由动能定理 ,得遏止电势差 由爱因斯坦方程 ,得铝的红限频率 铝的红限波长2 波长=0.0708nm的X射线在石蜡上受到康普顿散射,求在p/2和p方向上所散射的X射线的波长以及反冲电子所获得的能量各是多少?解:, , 时,时,3 在康普顿散射中,入射X射线的波长为3103nm,反冲电子的速率为0.6c,求散射光子的波长和散射方向。解:散射前后的能量相等,即 由 ,得1 设电子与光子的波长均为0.50nm,试求两者的动量之比以及动能之比。解:(1), , (2) 由可见,所以有,动能之比为2 若一个电子的动能等于它的静能,试求该电子的速率和德布罗意波长。解:根据题意 ,即 得 或 得 3 用电子显微镜来分辨大小为1nm的物体,试估算所需要的电子动能的最小值。(以eV为单位)解:计算表明,所以有4 一维无限深势阱中粒子的定态波函数为, 试求:(1)粒子处于基态和n=2状态时,在到之间找到粒子的概率;(2)概率密度最大处和最大值。解:(1)基态时,(2)概率密度 可见当 时概率密度最大,最大值为。即当处概率密度最大。基态时,处概率密度最大。 处概率密度最大。只供学习与交流

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服