1、第十五章 动 量知识网络: 第1单元 动量 冲量 动量定理一、动量和冲量1动量物体的质量和速度的乘积叫做动量:p=mv动量是描述物体运动状态的一个状态量,它与时刻相对应。动量是矢量,它的方向和速度的方向相同。动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。(4)研究一条直线上的动量要选择正方向2动量的变化:由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。B、若初末动量不在同一直线上,则运算遵循
2、平行四边形定则。【例1】一个质量为m=40g的乒乓球自高处落下,以速度=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少?正方向取竖直向下为正方向,乒乓球的初动量为: 乒乓球的末动量为: 乒乓球动量的变化为: =负号表示的方向与所取的正方向相反,即竖直向上。2冲量力和力的作用时间的乘积叫做冲量:I=Ft冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。冲量是矢量,它的方向由力的方向决定。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量
3、,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。高中阶段只要求会用I=Ft计算恒力的冲量。冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。(5)必须清楚某个冲量是哪个力的冲量(6)求合外力冲量的两种方法A、求合外力,再求合外力的冲量 B、先求各个力的冲量,再求矢量和【例2】 质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?mH解析:力的作用时间都是,力的大小依次是mg、mgcos和mgsin,所以它们的冲量依次是: 点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。二、动量定理1
4、动量定理物体所受合外力的冲量等于物体的动量变化。既I=p动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)。动量定理和牛顿第二定律的联系与区别、 形式可以相互转化、动量的变化率,表示动量变化的快慢、牛顿定律适用宏观低速,而动量定理适用于宏观微观高速低速、都是以地面为参考系动量定理表达式是矢量式。在一维情况下,各个矢量以同一个规定的方向为正。(5)如果是变力,那么F表示平均值
5、(6)对比于动能定理 I F t m v 2 m v 1 W F s m v 22 m v 21【例3】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?解析:因为合外力就是重力,所以p=Ft=mgt2动量定理的定性应用【例4】某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?解析:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。第
6、二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。3动量定理的定量计算明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。进行受力分析。只分析研究对象以外的物体施给研究对象的力。规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。ABC写出初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。根据动量定理列式求解。【例5】质量为m的小球,从沙坑上方
7、自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:沙对小球的平均阻力F;小球在沙坑里下落过程所受的总冲量I。解析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C。在下落的全过程对小球用动量定理:重力作用时间为t1+t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t1+t2)-Ft2=0, 解得:仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt1-I=0,I=mgt1点评:若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。当t1 t2时
8、,Fmg。m Mv0v/【例6】 质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为,那么拖车刚停下时,汽车的瞬时速度是多大?解析:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为,该过程经历时间为v0/g,末状态拖车的动量为零。全过程对系统用动量定理可得:【例7】 质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反跳的最大高度为h2=0.2m,从小球下落到反跳到最高点经历的时间为t=0.6s,取g=10m/s2。求:小球撞击地面过程中,球对地面
9、的平均压力的大小F。解析:以小球为研究对象,从开始下落到反跳到最高点的全过程动量变化为零,根据下降、上升高度可知其中下落、上升分别用时t1=0.3s和t2=0.2s,因此与地面作用的时间必为t3=0.1s。由动量定理得:mgt-Ft3=0 ,F=60N 4在Ft图中的冲量:Ft图上的“面积”表示冲量的大小。【例11】(难)跳伞运动员从2000m高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比,最大降落速度为vm=50m/s。运动员降落到离地面s=200m高处才打开降落伞,在1s内速度均匀减小到v1=5.0m/s,然后匀速下落到地面,试求运动员在空中运动的时间
10、。解析:整个过程中,先是变加速运动,接着匀减速,最后匀速运动,作出vt图线如图(1)所示。由于第一段内作非匀变速直线运动,用常规方法很难求得这1800m位移内的运动时间。考虑动量定理,将第一段的vt图按比例转化成ft图,如图(2)所示,则可以巧妙地求得这段时间。设变加速下落时间为t1,又:mg=kvm,得 所以:第二段1s内: 所以第三段时间 空中的总时间: 三、针对训练1对于力的冲量的说法,正确的是( )A力越大,力的冲量就越大B作用在物体上的力大,力的冲量也不一定大CF1与其作用时间t1的乘积F1t1等于F2与其作用时间t2的乘积F2t2,则这两个冲量相同D静置于地面的物体受到水平推力F的
11、作用,经时间t物体仍静止,则此推力的冲量为零2下列关于动量的说法中,正确的是( )A物体的动量改变,其速度大小一定改变B物体的动量改变,其速度方向一定改变C物体运动速度的大小不变,其动量一定不变 D物体的运动状态改变,其动量一定改变3如图所示为马车模型,马车质量为m ,马的拉力F与水平方向成角,在拉力F的拉力作用下匀速前进了时间t,则在时间t内拉力、重力、阻力对物体的冲量大小分别为 ( )AFt,0,FtsinBFtcos,0,FtsinCFt,mgt,FtcosDFtcos,mgt ,Ftcos4一个质量为m的小钢球,以速度v1竖直向下射到质量较大的水平钢板上,碰撞后被竖直向上弹出,速度大小
12、为v2,若v1 = v2 = v,那么下列说法中正确的是( )A因为v1 = v2,小钢球的动量没有变化B小钢球的动量变化了,大小是2mv,方向竖直向上C小钢球的动量变化了,大小是2mv,方向竖直向下D小钢球的动量变化了,大小是mv,方向竖直向上5物体动量变化量的大小为5kgm/s,这说明( )A物体的动量在减小 B物体的动量在增大C物体的动量大小也可能不变 D物体的动量大小一定变化6初动量相同的A、B两滑冰者,在同样冰面上滑行,已知A的质量大于的质量,并且它们与冰面的动摩擦因数相同,则它们从开始到停止的滑行时间相比,应是( )AtAtB BtA=tB CtA I下 BI上vB,;碰后A的速度
13、不大于B的速度, ;又因为碰撞过程系统动能不会增加, ,由以上不等式组解得:点评:此类碰撞问题要考虑三个因素:碰撞中系统动量守恒;碰撞过程中系统动能不增加;碰前碰后两个物体位置关系(不穿越)和速度大小应保证其顺序合理。2子弹打木块类问题 s2 ds1v0子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。【例3】 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块
14、前进的距离。解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理: 对木块用动能定理: 、相减得: 点评:这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位
15、移)。 由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上、相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比: 一般情况下,所以s2d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是EK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不
16、相等,所以不能再用式计算EK的大小。3反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,点评:应该注意到:此结论与人在
17、船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。以上列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,就不能再用m1v1=m2v2这种形式列方程,而要用(m1+m2)v0= m1v1+ m2v2列式。【例5】 总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,4爆炸类问题【例6】 抛出的手雷在最高点时水平速度为10m/s,这时突
18、然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1+m2 )g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统动量近似守恒。设手雷原飞行方向为正方向,则整体初速度;m1=0.3kg的大块速度为m/s、m2=0.2kg的小块速度为,方向不清,暂设为正方向。由动量守恒定律:m/s此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反5某一方向上的动量守恒【例7】 如图所示,AB为一光滑水平横杆,杆上套一质
19、量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成角时,圆环移动的距离是多少?解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB成角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mv且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则上式可写为:Md=m(L-Lcos)-d解得圆环移动的距离: d=mL(1-cos)/(M+m)6
20、物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,mM,A、B间动摩擦因数为,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M+m)v所以v=v0 方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v,则由动量守恒定律得:Mv0-mv0=Mv对板车应用动能定理得:-mgs=mv2-mv02
21、 联立解得:s=v02【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度; (2)滑块C离开A时的速度。解析:这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。(1)当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块分离,分离时
22、木块A的速度为。最后C相对静止在B上,与B以共同速度运动,由动量守恒定律有 =(2)为计算,我们以B、C为系统,C滑上B后与A分离,C、B系统水平方向动量守恒。C离开A时的速度为,B与A的速度同为,由动量守恒定律有三、针对训练练习11质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( B )A减小 B不变 C增大 D无法确定2如图所示,放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么( A、B、D)AA、B离开弹簧
23、时的速度比为12BA、B质量比为21C未离开弹簧时,A、B所受冲量比为12D未离开弹簧时,A、B加速度之比123如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。若爆竹的火药质量以及空气阻力可忽略不计,g取,求爆竹能上升的最大高度。解:爆竹爆炸瞬间,木块获得的瞬时速度v可由牛顿第二定律和运动学公式求得,爆竹爆炸过程中,爆竹木块系统动量守恒 练习21质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为 7 kgm/s,球2的动量为5
24、kgm/s,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是A Ap1=-1 kgm/s,p2=1 kgm/sBp1=-1 kgm/s,p2=4 kgm/sCp1=-9 kgm/s,p2=9 kgm/sDp1=-12 kgm/s,p2=10 kgm/s2小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时AB与C都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是BCD A如果AB车内表面光滑,整个系统任何
25、时刻机械能都守恒B整个系统任何时刻动量都守恒C当木块对地运动速度为v时,小车对地运动速度为vDAB车向左运动最大位移小于L4质量为M的小车静止在光滑的水平面上,质量为m的小球用细绳吊在小车上O点,将小球拉至水平位置A点静止开始释放(如图所示),求小球落至最低点时速度多大?(相对地的速度)()6如图所示甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100 kg,另有一质量m=2 kg的球.乙站在车的对面的地上,身旁有若干质量不等的球.开始车静止,甲将球以速度v(相对地面)水平抛给乙,乙接到抛来的球后,马上将另一质量为m=2m的球以相同速率v水平抛回给甲,甲接
26、住后,再以相同速率v将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:(1)甲第二次抛出球后,车的速度大小.(2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球. ((1)v,向左 (2)5个)练习31在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )A若两球质量相同,碰后以某一相等速率互相分开B若两球质量相同,碰后以某一相等速率同向而行C若两球质量不同,碰后以某一相等速率互相分开D若两球质量不同,碰后以某一相等速率同向而行2如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子
27、弹的速度分别为和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为( )A BC D3载人气球原静止于高h的空中,气球质量为M,人的质量为m。若人要沿绳梯着地,则绳梯长至少是( )A(m+M)h/M Bmh/M CMh/m Dh4质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,若将质量为2kg的砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A2.6m/s,向右 B2.6m/s,向左 C0.5m/s,向左 D0.8m/s,向右5车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前
28、车壁后,车厢的速度为( )Amv/M,向前 Bmv/M,向后Cmv/(m+M),向前 D06向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )Ab的速度方向一定与原速度方向相反B从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大Ca、b一定同时到达水平地面D在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等7两质量均为M的冰船A、B静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m的小球从A船跳入B船,又立刻跳回,A、B两船最后的速度之比是_。参考答案1A、D 2B 3A 4C 5D 6C、D 7第三
29、单元 动 量 和 能 量概述:处理力学问题、常用的三种方法一是牛顿定律;二是动量关系;三是能量关系。若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定理。特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方便之处,特别是变力问题,就显示出其优越性。FAB例题分析:例1. 如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用水平力F将B向左压,使弹
30、簧被压缩一定长度,静止后弹簧储存的弹性势能为E。这时突然撤去F,关于A、B和弹簧组成的系统,下列说法中正确的是 (BD) A.撤去F后,系统动量守恒,机械能守恒 B.撤去F后,A离开竖直墙前,系统动量不守恒,机械能守恒 C.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E D.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E/3A离开墙前墙对A有弹力,这个弹力虽然不做功,但对A有冲量,因此系统机械能守恒而动量不守恒;A离开墙后则系统动量守恒、机械能守恒。A刚离开墙时刻,B的动能为E,动量为p=向右;以后动量守恒,因此系统动能不可能为零,当A、B速度相等时,系统总动能最小,这时的弹性势能为E
31、/3。 指出:应用守恒定律要注意条件。 对整个宇宙而言,能量守恒和动量守恒是无条件的。但对于我们选定的研究对象所组成的系统,守恒定律就有一定的条件了。如系统机械能守恒的条件就是“只有重力做功”;而系统动量守恒的条件就是“合外力为零”。LddB例2. 长为L宽为d质量为m总电阻为R的矩形导线框上下两边保持水平,在竖直平面内自由落下而穿越一个磁感应强度为B宽度也是d的匀强磁场区。已知线框下边刚进入磁场就恰好开始做匀速运动。则整个线框穿越该磁场的全过程中线框中产生的电热是_。若直接从电功率计算,就需要根据求匀速运动的速度v、再求电动势E、电功率P、时间t,最后才能得到电热Q。如果从能量守恒考虑,该过
32、程的能量转化途径是重力势能EP电能E电热Q,因此直接得出Q=2mgd 例3如图所示,质量为1.0kg的物体m1,以5m/s的速度在水平桌面上AB部分的左侧向右运动,桌面AB部分与m1间的动摩擦因数=0.2,AB间的距离s=2.25m,桌面其他部分光滑。m1滑到桌边处与质量为2.5kg的静止物体m2发生正碰,碰撞后m2在坚直方向上落下0.6m时速度大小为4m/s,若g取10m/s2,问m1碰撞后静止在什么位置?解析:m1向右运动经过AB段作匀减速运动,由动能定律可以求出离开B点继续向右运动的速度为4米/秒;和m2发生碰撞后,m2作平抛运动,由平抛运动知识可以求出m2做平抛运动的初速度(碰撞之后)
33、为2米/秒。利用动量守恒定律可以求出碰撞之后瞬间m1的速度为1米/秒。由动能定律可以求出返回经过AB段,离B点0.25米处停止。例4翰林汇翰林汇222例子例如图所示,球A无初速地沿光滑圆弧滑下至最低点C后,又沿水平轨道前进至D与质量、大小完全相同的球B发生动能没有损失的碰撞。B球用长L的细线悬于O点,恰与水平地面切于D点。A球与水平地面间摩擦系数m=0.1,已知球A初始高度h=2米,CD=1米。问: (1)若悬线L=2米,A与B能碰几次?最后A球停在何处? (2)若球B能绕悬点O在竖直平面内旋转,L满足什么条件时,A、B将只能碰两次?A球最终停于何处?(1)20次 A球停在C处(2)L0.76
34、米,A球停于离D9.5米处例5如图所示,小木块的质量m0.4kg,以速度20m/s,水平地滑上一个静止的平板小车,小车的质量M1.6kg,小木块与小车间的动摩擦因数0.2.(不计车与路面的摩擦)求:(1)小车的加速度;(2)小车上的木块相对于小车静止时,小车的速度;(3)这个过程所经历的时间. (1)0.5m/s2;(2)4m/s;(3)8s第二问:对m、M系统研究,利用动量守恒定律很快求出木块相对小车静止时,小车的速度。也可以利用动能定理分别研究m和M,但相对而言要麻烦得多。表明合理选择物理规律求解,可以提高解题速度和准确程度例6 如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环.一个质量为m的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:小滑块的初速度V0满足什么条件才能使它运动到环顶时恰好对环顶无压力? 解析:滑块至圆环的最高点且恰好对环顶无压力,应有式中V是滑块相对圆心O的线速度,方向向左。设小车此时速度u,并以该速度方向为正方向,则滑块的对地速度为对
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100