ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:31KB ,
资源ID:3776423      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3776423.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(自考线性代数教学大纲教学内容.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

自考线性代数教学大纲教学内容.doc

1、自考线性代数教学大纲精品文档线性代数(经管类)教学大纲中文名称:线性代数(经管类)英文名称:Linear Algebra课程编号:04184课程性质:专业课课程类别:必修课 学 分:4总学时数:64周学时数:4适用专业及学生类别:经济管理学院和商学院自考学生一 课程概述(一)课程性质 线性代数是经济管理类各专业本科段的一门重要的公共基础理论课。它是为培养各种与经济和管理有关的人才而设置的。线性代数是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性的一门学科。它为研究和处理涉及许多变元的线性问题提供了有力的数学工具,应用十分广泛。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩

2、阵、线性方程组、矩阵的特征值和特征向量、二次型等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程(如运筹学,现代管理学,计算机等)及进一步扩大数学知识面奠定必要的数学基础。(二)课程设计思路本课程标准是根据线性代数(经管类)自学考试大纲的精神和要求编写的,章节安排、自学要求、重点难点都符合大纲要求。结合我校学生状况、教学资源等实际,以课程基本理念为指导,在总结教学经验和研究成果的基础上,对课程目标分别从知识与技能、过程与方法、等方面进行具体明确的阐述。在讲述中,以理论课为主,课后布置适当作业巩固

3、课堂内容,在每一章结束后适当安排习题课,对于各章在自学考试的重点难点以及作业中出现的问题,及时加以指导,强化巩固各章的教学内容,并穿插讲解历年自考真题。 各章学时分配第一章 行列式 8第二章 矩阵18第三章 向量空间 12第四章 线性方程组 6第五章 特征值与特征向量12第六章 实二次型 8合 计 64二、课程教学目标及基本教学要求通过本课程的教学,要求学生:1.理解行列式的性质,会计算行列式;2.熟练掌握矩阵的各种运算;3.学会判别向量组的线性相关与线性无关。理解向量组的秩和矩阵的秩的概念及其关系。4.掌握线性方程组的解的结构和利用初等行变换法求解线性方程组的方法;5.会求实方阵的特征值和特

4、征向量,掌握方阵可对角化的条件,掌握方阵对角化的计算方法;6.了解实二次性的概念和会正定二次型的判别方法。本课程的重点是行列式的计算;矩阵的运算;初等变换法在求矩阵的逆、秩和向量组的相关性以及解线性方程组中的应用;特征值,特征向量的求法;n阶矩阵与对角矩阵相似的条件及矩阵对角化;用配方法化二次型为标准形。本课程难点是一般的n阶行列式计算;矩阵的乘积及分块矩阵的乘积;向量间的线性关系;n阶矩阵与对角矩阵相似的条件;利用正交矩阵化实对称矩阵为对角矩阵;用正交变换法化二次型为标准形。在教学过程中,要求学生切实掌握有关内容的基本概念、基本理论和基本方法。通过讲解、复习、做大量的练习,具有比较熟练的运算

5、能力,同时培养抽象思维能力和逻辑推理能力,并不断提高自学能力。三 课程详细内容和要求第一章 行列式(8学时)本章的教学目标与教学要求:理解n阶行列式的定义及其性质;掌握用行列式的计算方法(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式);掌握克莱姆法则;知道齐次线性方程组有非零解(仅有零解)的判定。教学内容:二阶三阶行列式和n阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开;克莱姆法则。本章的重点、难点和考点:重点:行列式的性质;行列式按某一行(列)展开定理;齐次线性方程组有非零解(仅有零解)的结论。难点:一般的n阶行列式计算。考点:行列式的定义(识记)、性质和计算(简单

6、应用)。第二章 矩阵(18学时)本章的教学目标与教学要求:熟练掌握矩阵加、减、数乘、乘的运算规则(明确矩阵与行列式的区别),了解其经济背景,熟练掌握方阵的行列式的有关性质;了解矩阵分块的原则;掌握分块矩阵的运算规则;理解可逆矩阵的概念及其性质;会用伴随阵求矩阵的逆。熟练掌握用初等行变换的方法求矩阵的逆;了解初等矩阵的概念及它们与矩阵初等变换的关系;熟练掌握用初等变换的方法求矩阵的秩。教学内容:矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角

7、阵);逆矩阵(可逆阵的定义;伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。本章的重点、难点和考点:重点:矩阵加、减、数乘、乘的运算;初等变换求矩阵的逆;初等变换求矩阵的秩。难点:矩阵的乘积及分块矩阵的乘积;矩阵不满足的运算律与矩阵的秩的概念的理解。考点:矩阵的定义(识记)及其各种运算(重点是乘法,要求综合应用);方阵的逆矩阵的判别和求法(会求伴随矩阵,会计算逆阵);分块矩阵及其运算(识记);矩阵的初等变换和初等方阵(熟练应用

8、);矩阵的秩(会求)第三章 向量空间(12学时)本章的教学目标与教学要求:知道向量的概念;熟练掌握向量的加法和数乘运算;掌握同维数向量组线性组合的概念和组合系数的求法;掌握向量组的线性相关、线性无关的定义和判别法;理解向量组的极大无关组和秩的定义并要会求之;清楚向量组的秩和矩阵的秩之间的关系;知道向量空间的基与维数和坐标的概念并会求一组基及在基下的坐标。教学内容:n维向量的定义;向量的加法与数乘运算;向量间的线性关系(线性组合;线性相关与线性无关;关于线性组合与线性相关的定理;向量组的极大无关组与秩(矩阵的行秩与列秩);n维向量空间。本章的重点、难点与考点:重点:线性组合系数的求法;求向量组的

9、秩;向量组线性相关与线性无关的判别。难点:极大无关组与向量组的秩的理解;线性无关与线性相关的判别法。考点:n维向量的定义(识记);向量组的线性组合(会求组合系数);向量组的线性相关与线性无关的判别(熟练判断、证明);向量组的极大无关组与秩(熟练求解);n维向量空间(会求基及坐标)。第四章 线性方程组(6学时)本章的教学目标与教学要求:掌握齐次线性方程组的解空间、基础解系及通解的含义和求法;熟练掌握非齐次线性方程组的有解判别法和通解的求法。教学内容齐次线性方程组有非零解的充要条件;齐次线性方程组解的性质与解空间、基础解系与通解;非齐次线性方程组有解的条件、解的性质、结构和通解求法。本章的重点与难

10、点:重点:齐次线性方程组有非零解的充要条件;非齐次线性方程组有解的条件;矩阵初等行变换求线性方程组的解的方法。难点:齐次线性方程组的基础解系的求法。考点:齐次线性方程组有非零解的充要条件(熟记);齐次线性方程组解的性质与解空间(理解);齐次线性方程组的基础解系与通解(综合应用、熟练求解);非齐次线性方程组有解的条件(熟记);非齐次线性方程组解的性质、结构和通解求法(综合应用、熟练求解)。第五章 矩阵的特征值(12学时)本章的教学目标与教学要求:熟练掌握矩阵特征值、特征向量的概念与求法;了解特征值、特征向量的性质;清楚两个同阶方阵相似的概念和性质;理解方阵相似于对角形矩阵的条件并会用相似变换化方

11、阵为对角阵;会计算两个实向量的内积和向量的长度,会判断两向量是否正交;了解正交向量组的定义,会用施密特正交化方法把线性无关的向量组化为等价的正交单位向量组;了解正交矩阵的定义、性质及判别法;了解实对称矩阵的特征值和特征向量的性质;会用正交矩阵化实对称矩阵为对角阵。教学内容:矩阵的特征值与特征向量(矩阵的特征值和特征向量的定义;特征方程;特征值,特征向量的求法及有关性质);相似矩阵(相似矩阵及其性质;n阶矩阵与对角矩阵相似的条件);实对称矩阵的特征值和特征向量(向量内积的定义,向量的长度;正交向量组(施密特正交化过程);正交矩阵的定义及其性质,实对称矩阵的特征值和特征向量。利用正交矩阵化实对称矩

12、阵为对角矩阵)。本章的重点、难点与考点:重点:求实方阵的特征值和特征向量;方阵可对角花的条件和方法;方阵的相似对角化;实对称矩阵的正交相似对角化。难点:方阵与实对称矩阵的相似标准形的求法。考点:特征值与特征向量(会求);相似矩阵的定义与性质(理解掌握);方阵相似对角化(熟练掌握);向量内积和正交矩阵(清楚定义,理解性质,掌握方法);实对称阵的性质(知道)与正交相似标准形(会求)。 第六章 实二次型(8学时)本章的教学目标与教学要求:理解实二次型的定义;掌握二次型的矩阵表示方法; 了解二次型的标准形;了解合同矩阵的概念;会用正交变换化二次型为标准形;了解用配方法化二次型为合同标准形;知道惯性定理

13、;理解正定二次型、正定矩阵的定义和有关性质;掌握正定二次型和正定矩阵的判别法。教学内容:实二次型与标准形(二次型及其矩阵;二次型的标准形;合同矩阵;用配方法化二次型为标准形;用正交变换法化二次型为标准形);正定二次型与正定矩阵(正定二次型,正定矩阵及其性质)。本章的重点、难点与考点:重点:化二次型为标准形;正定二次型和正定矩阵的判别法。难点:用正交变换法化二次型为标准形。考点:实二次型的定义及其矩阵表示(清楚、理解); 实二次型的标准形(知道);化实二次型为标准形(掌握会求);知道惯性定理与二次型的规范性(知道);正定二次型、正定矩阵(理解概念、掌握判别方法)。四 实施建议(一)教学组织在学校

14、成教处统一组织下,由试本高数教研室主任负责,成立教学组,实施备课,大课讲授,自学辅导,指导性自习,考试与考查,真题模拟等教学活动。(二)教学方法 在本门教学中应注意理论与实践的结合,注意学生智能的培养,使学生通过对矩阵等概念的学习,掌握线性方程组的解的结构,进而认识和掌握线性空间的概念,为后续课程的学习打好数学基础。1、讲课讲课以大班为主。教师要做到备思想,备知识,备对象,备方法。对重点、难点和新的教学内容,必要时可经集体讨论预讲,以保证教学质量。讲课要用启发式,讲述问题要有充分实验根据,理论归纳要有逻辑。教学过程要尽量采用现代化教学手段。学生在听课前进行预习,听课时要集中注意力,课后认真复习

15、教材,以消化和巩固讲授内容。2、作业在数学课的教学中,习题是十分重要且必不可少的一个环节。课后作业以巩固、掌握基础知识和理论为重点,适量的穿插布置历年考试真题。3、习题课 适当安排习题课,对于本章在自学考试中的重点难点以及作业中出现的问题,及时加以指导,巩固本章的教学效果。五 课程考核评价建议(一)教员授课质量评价对课程考核结果进行评价,可准确反映教学质量的水平,而反映教学质量的重要指标就是教师的教学能力。建立教师授课质量评价体系,可从学员评价、同行评价和教学管理部门评价等进行“三位一体”的总体评估。评价的指标主要包括:课堂内容融会贯通,讲解精炼;理论联系实际,易于理解;层次分明,重点突出,不

16、照本宣科;重点、难点内容讲深讲透;板书整齐有条理,注重现代教育的应用;普通话授课,语言生动,快慢适中;启发式教学,调动学员积极思维;结合教学内容重视素质教育和辩证唯物主义;教学内容丰富。(二)学生课程学业考核1、本门课程是一门国考课程,评价依据即为考试成绩。 2、考试时间:150分钟。3、考试方式:闭卷笔试。60分为及格线。4、试题类型、数目及分值单项选择题:10小题 共20分;填空题10小题,共20分:计算题6小题,共54分;证明题1小题,6分。六 教学必需的保障条件及建议(一)教学建议1、建立年轻教师集体备课制度 集体备课成员由教研室主任、主讲教师、教学组的其他教师以及有关的教授。集体备课

17、的内容包括:讲授内容的基本概念、框架,应突出考试的重点、教学的难点,以及相关的教学方法。通过集体备课可以发挥集体的智慧,弥补各位教师的不足,提高教学水平。2、教学评估制度 在课程开课期,由学校督导组进行现场听课评估,教研室或教学组组织12 次同行听课进行评估,在结业考试前由学员对教师授课质量进行评估。另外,所带班级学生的通过率也是一个重要考核依据。3、青年教师培训制度,对新聘的年轻教员,必须进行培训,在进行正式上课前,必须进行预讲。4、教研室的教学档案管理 教研室的教学档案管理是整个学校教学档案管理的有机组成部分,也是教研室重要工作之一。教学档案主要包括:(1)所有授课内容的规范电子版教案与课件;(2)学生反馈的及本人的教学意见或建议;(3)集体备课情况记录(各教研室主任);(4)试卷的电子版和纸质版(各教研室主任);(5)学员成绩单(各教师);(6)评教评学统计分析结果(各教研室主任);(7)教学事故与差错情况(各教研室主任)。(二)教材和参考资料选用1、线性代数(经管类)全国高等教育自学指导委员会组编 刘吉佑 徐诚浩主编武汉大学出版社 2006年版2、线性代数教与学参考,钱志强主编,中国致公出版社3、线性代数导教导学导考,陆全 徐仲主编,西北工业大学出版社4、中国数学会收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服