ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:81.50KB ,
资源ID:3772463      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3772463.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(小学六年级奥数-抽屉原理(含答案)讲课稿.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小学六年级奥数-抽屉原理(含答案)讲课稿.doc

1、学习资料抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为:第一抽屉原理:(mn1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m1)个物体。(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为:第二抽屉原理:(mn1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m1)个物体。2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,13点牌各一张),洗好后背面朝上放。一次至少抽取 张牌,

2、才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取 张牌。点拨 对于第一问,最不利的情况是两种颜色都取了113点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。点拨 对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。解 (1)132127(张) (2)94137(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围

3、内?点拨 可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。解 (1)因为371231,所以,根据第一抽屉原理,至少有314(人)属相相同。(2)要保证有5人的属相相同的最少人数为412149(人)不保证有6人属相相同的最多人数为51260(人)所以,总人数应在49人到60人的范围内。例3 有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨 首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求

4、。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出133,这时假设仍是没有四种花色,再取1张即可。 解 (1)243115(张) (2)2133142(张)例4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同?点拨 根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况:解 借球有6种情况,看做6个抽屉,所以至少要来7名学生借球,才能保证。例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小数的倍数?点拨 把130这30个自然数分

5、成下面15组:1,2,4,8,16,3,6,12,24,5,10,20,7,14,28,9,18,11,22,13,26,15,30,1 7,19,21,23,25),27,29,在这15组中,每组中的任意两个数都存在倍数关系,故可把这15组看做15个抽屉,至少要取出16个数才能达到题目的要求。例6 边长为1的正方形中,任意给定13个点,其中任意三点都不共线。试说明其中至少有4个点,以此4点为顶点的四边形面积不超过四分之一。解:把正方形平均分成四个相同的小正方形,每个正方形的面积为四分之一。13=43+1,13个点至少有4个点在同一个小正方形,以此4点为顶点的四边形的面积不超过小正方形的面积,

6、即不超过原正方形面积的四分之一。例7 平面上给定六个点,没有三点共线。每两点用一条红线段或黄线段连接起来,试说明由这些线段围成的三角形中,至少有一个三角形,它的三条边同色.解 因为有六个点,每个点都要引出五条线段,据抽屉原理,任意一点引五条线段中至少有三条线段同色,不妨设是红色(如图红色线段为实线,蓝色线段为虚线),这时三角形a2a3a4会出现两种颜色情况(1)若a2a3,a3a4,a2a4中有任意一条线段为红的,那么这条红线段与它的两个端点与a1引出的两条线段组成一个红三角形。(2)若a2a3,a3a4,a2a4中没有一条线段是红色的,则a2a3a4为一个蓝色三角形。综上所述,无论(1)还是

7、(2),题目结论都成立。说明:若把两种颜色连线换成人与人之间的相识或不相识关系,就可以解决实际问题:结果可证明6人之间至少有3人互相认识或不认识。1.要在30米长的水泥台上放16盆花,不管怎么放,至少有几盆之间的距离不超过2米?解:两盆 302=15段,30米中每两米为一段的有15段,16盆花至少有两盆花在一段,至少两盆之间的距离不超过2米。3.在一个边长为1的正三角形内随意放置10个点,试说明其中至少有两个点之间的距离不超过1/3。解:把边长为一的正三角形平分成9粉,由每个三角的边长为1/3,必有两点在一个三角形内,则两点的距离小于1/3。4.用黑、红两种颜色将一个长9、宽3的矩形中的边长为

8、1的小正方形随意涂色,试证必有两列涂色情况一样。因为涂色出现八种情况:(红红红),(蓝,蓝,蓝),(红,红,蓝),(红,蓝,红),(蓝,红,红),(蓝,蓝,红),(蓝,红,蓝),(红,蓝,蓝),所以九列中一定有两列是相同的。5.从整数1,2,3,199,200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数。分数组1,2,4,8,16,128,3,6,12,24,48192,5,10,20,40200,7,14,28,56,112,9,18,36,72,144,11,22,44,88,176,13,26,52,104,15,30,60,120,99,198,10

9、1,103,199共100个抽屉,任选101个数必有两个数在一个抽屉里,即其中的一个是另一个的倍数。6.在1010方格纸的每个方格中,任意填入1、2、3、4四个数之一。然后分别对每个22方格中的四个数求和。在这些和数中,至少有多少个和相同?1、2、3、4填入后,四个数的和最小为4,最大为16。4-16之间有13个不同的和,22的方格在1010的方格中可推出81个和,8113=63,故至少有6+1=7个和。7.从八个连续自然数中任意选出五个,其中必有两个数的差等于4,试分析之。 这八个连续自然数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7,分为四组 a+4,a,a+5,a+1,a

10、+6,a+2,a+7,a+3,取五个数必有两个数在一个抽屉中,即差为48.任意给定七个自然数,说明其中必有四个数,它们的和为4的倍数。 七个数中必有三对奇偶性相同,即满足a1+a2=2k1,a3+a4=2k2,a5+a6=2k3。在k1,k2,k2三个数中又至少有两个奇偶性相同,不妨设k1,k2奇偶性相同,所以k1+k2=2m,即a1+a2+a3+a4=4m, 2k1+2k2=4m,所以其中必有四个数,它们的和是4的倍数。9.从3,6,981,84这些数中,任意选出16个数,其中至少有两个数的和等于90,试说明之。 分数组6,84,9,81,12,78,42,48,3,45,共15个抽屉,故取

11、16个数必有两个数在一个抽屉中,即和为90。10.任意给定七个不同的自然数,其中必有两个数的和或差是10的倍数,试说明之。按余数是2或5或两个余数和为10来构造6个抽屉:0,5,1,9,2,8,3,7,4,6这样7个数必有两个数在一个抽屉里,它们的余数之和是10或余数相同,从而他们本身的和或差为10的倍数。11.能否在10行10列的方格中的每个空格处分别填上1,2,3这三个数,使大正方形的每行、每列及两条对角线的各个数字和互不相同? 10个数的和最小为10,最大为30,10-30中有21个数。10行10列加上两条对角线共22个和,则必有两条线上的和相同。所以不能。12.能否把17这七个数排成一

12、圈,使任意两个相邻数的差等于2或3? 在这7个数中,1,2,6,7都不能相邻,要把它们隔开需要4个数,而现在只剩下3,4,5三个数,所以不能。13.平面上给定六个点,没有三个点在一条直线上,每两点用一条红色线段或蓝色线段连接起来。试说明这些线段围成的三角形中,至少有两个同色三角形。14.库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少有多少人搬运才能保证有5人搬运的球完全一样? 每人搬得可能是两篮、两排、两足、两手、篮排、篮足、篮手、排足、排手、足手10种情况。 410+1=41人15.在一个34平方米的长方形盘子中,任意撒入5个豆,5个豆中距离最小的两个豆的最大距离是几米?(这时盘

13、子的对角线长为5米) 将长方形分成四份,如放5豆,必有2个豆在一个小长方形内,一个小正方形 内最大的距离是2.5米(如AE),故距离最小的两个点的距离最大值是2.5米。16.一个3行7列的21个小方格的长方形,每个小方格用红或黄中的一种颜色涂色。证明:不论如何涂色,一定能找到一个由小方格组成的长方形,它的四个角上的小方格具有相同的颜色。 第一行有7个方格,因为涂两种颜色,根据抽屉原理二,必有一种颜色涂了4个或4个以上的方格。 设第一行有四个红方格,第二行是在第一行四个红方格下面的四个方格中,如果有两个红色,那么结 论已成立,否则必有三个黄方格。第三行是在第二行3个黄方格下面的3个方格中,至少有

14、两个方格 涂一种颜色。如涂红色就与第一行组成符合条件的长方形,如涂黄色就与第二行组成符合条件的长方形。17.在1,2,n中,任意取10个数,使得其中有两个数的比值不小于,且不大于。求n的最大值。由于任取10个数中有两个数在同一个抽屉里,显然最多构造9个抽屉这9个抽屉中的每一个抽屉都含有1,2,3,n中的一些数,而且这些数必须满足每两个数的比值都在和之间,这9个抽屉,是:1;2,3;4,5,6;7,8,9,10;11,12,16;17,18,24,25;26,27,38,39;40,41,59,60;61,62,90,91 因此,n的最大值是9118.从1,2,3,1988,1989这些自然数中

15、,最多可取多少个数,其中每两个数的差不等于4? 把1,2,1989这些数分成四组公差是4的等差的数列; 1,5,9,1989共498个数; 2,6,10,1986共497个数; 3,7,111987共497个数; 4,8,121988共497个数; 我们发现:1.四行中每一行中任意相邻两数相差为4,不相邻两数相差不可能是4; 2.而分属不同两行的任意两个数相差不可能为4,因为如果相差为4的话,两数将被归为一 行,这显然与事实矛盾;故选符合规定的数只要在每组里每隔一个数选一个,每行最多可 选249 个数;最终2494=996(个)19.四个人聚会,每人各带了两件礼品,分赠给其余三个人中的两人。试

16、证明:四个人中至少有两对,每对是互赠过礼品的。 将这四个人用4个点表示,如果两个人之间送过礼品,就在两点之间连一条线。由于每人送出2件礼 品,共有42=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线。四点间, 每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点 可以与前面的点相同)之间也连了2条线。即为所证结论。20.一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有几人已经就座?由于,他无论坐在哪个座位上都与已经就座的某个人相

17、邻,求至少有多少人,则有人的位置如图所示,(“”表示已经就座的人,“”表示空位):.即有人的位置占全部人数的1/3,903=30人。即原来至少有30人已经就座。21.把1,2,3,8,9,10任意摆放在一个圆圈上,每相邻的三个数组成一个和数。试说明其中至少有一个和数不小于17。(反证)假设任意三个相邻的数之和都小于17即小于等于16。则10组之和应小于等于1610=160; 10组之和即把10个数分别加了3次,又因为:3(1+2+3+4+5+6+7+8+9+10)=165160 所以矛盾;故假设不成立,所以其中至少有一个和不小于17。22.某人步行10小时,走了45千米。已知他第一小时走了5千

18、米,最后一小时走了3千米,其余每小时都走了整数千米。证明在中间8小时当中,一定存在连续的两小时,这人至少要走10千米。这个人在中间的8小时内走了4553=37(km)假设在中间的8个小时内他相邻2个小时内都走9km,8个小时内一共有7组相邻,其中除去这8个小时内的前后两个小时,其他6个小时都有2次相邻, 这8个小时内的路程可得:79629=36km37km一定存在连续的两小时,这人至少走了10千米。23.在1,2,3,4,5,6,7,8,9,10,11,12这12个自然数中,任意选取8个不同的数,其中必有两对数,每对数的差是1。构造6个抽屉1,23,45,67,89,1011,12将八个不同的

19、数放入六个抽屉,必有两对数,每对的差是1。24.有红、黄、蓝、绿四色的小球各10个,混合放在一个布袋里。一次摸出8个小球,其中至少有几个小球的颜色是相同的。把红黄蓝绿四个小球看成四个抽屉,一次摸出八个小球放在抽屉里,84=2,其中至少有2个小球颜色相同。25.数学奥林匹克竞赛,全世界52个国家的308名选手参加了竞赛。按组委会规定,每个国家的选手不得超过6名,至少有几个国家派6名选手参赛。每个国家最多派出的运动员不超过6人,假设52个国家每个国家都派了5名,则剩下308-525=48(名)运动员。因为每个国家派出的运动员不超过6名,所以只好把48名运动员平均分到48个国家中去,也就是说,至少有

20、48个国家派满了6名运动员。26.某中学有十位老师,每位至少与另外九位中的七位认识,我们必可从中找出几位,他们彼此认识。 用a(1),a(2),.,a(10)表示10个人;a(1)不认识的至多2人,认识的人不少于7个,不妨假定a(1)认识a(2);a(1)、a(2)中至少有一个人不认识的人至多4人,不妨假定a(1)、a(2)都认识a(3);a(1)、a(2)、a(3)至少有一个人不认识人的至多6人,不妨假定a(1)、a(2)、a(3)都认识a(4); 则a(1)、a(2)、a(3)、a(4)互相认识;我们必可从中找出4位,他们彼此认识。27.袋子里有4种不同颜色的小球,每次摸出2个。要保证有1

21、0次所摸出的结果是一样的,至少要摸几次。 把1种不同的结果看成1个抽屉,至少要摸出910+1=91(次)28.某班有27名同学排成三路纵队外出参观,同学们都戴着红色或白色的太阳帽。在9个横排中,至多有几排同学所戴的帽子的颜色顺序不同。每排三人,每排戴帽子的可能有8种 ,所以27人排成九个横排,必有两个横排所戴帽子顺序相同,帽子颜色顺序不同的有:9-2=7排29.在平面内有1994条互不平行的直线。求证:一定有两条直线它们的夹角不大于度。如果平面内有3条互不平行的线,那么,要将最小的两条线的夹角为最大,就必须先让两条互相垂直,夹角为90,然后再让另外一条线过交点,平分夹角,角度为45,45度, 所以我们就说:平面里有3条互不平行的直线,求证一定有两条直线的夹角不大于度, 同理,可得平面里有1994条互不平行的直线,求证一定有两条直线的夹角不大于度。30.设自然数n具有以下性质:从前n个自然数中任取21个,其中必有两个数的差是5。这样的n中最大是几? 设计20个抽屉,且抽屉中两个数字之差为5:1,62,73,835,40,n的最大值为40。各种学习资料,仅供学习与交流

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服