1、161 实验:探究碰撞中的不变量一、三维目标知识与技能1、明确探究碰撞中的不变量的基本思路2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法3、掌握实验数据处理的方法过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法2、学习根据实验数据进行猜测、探究、发现规律的探究方法情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意3、在对实验数据的猜测过程中,提高学生合作探究能力4、在对现象规律的语言阐述中
2、,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会二、教学重点碰撞中的不变量的探究三、教学难点实验数据的处理四、教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化师:两个物体的质量比例不同时,它们的速度变化也不一样师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒)(二)进行新课1、实验探究的基本思路11 一维碰撞师:我们只研究
3、最简单的情况两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动,这种碰撞叫做一维碰撞课件:碰撞演示如图所示,A、B是悬挂起来的钢球,把小球A拉起使其悬线与竖直线夹一角度a,放开后A球运动到最低点与B球发生碰撞,碰后B球摆幅为角如两球的质量mA=mB,碰后A球静止,B球摆角=,这说明A、B两球碰后交换了速度如果mAmB,碰后A、B两球一起向右摆动 如果mAF外的条件)2、碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变3、碰撞过程中,系统的总动能只能不变或减少,不可能增加提问:碰撞中,总动能减少最多的情况是什么?(在发生完全非弹性碰撞时总动能减少最多)(二)进行新课1、
4、展示投影片1,内容如下:如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动设地层给它们的平均阻力为F,则木楔可进入的深度L是多少? 组织学生认真读题,并给三分钟时间思考(1)提问学生解题方法,可能出现的错误是:认为过程中只有地层阻力F做负功使机械能损失,因而解之为Mg(h+L)+mgL-FL=0将此结论写在黑板上,然后再组织学生分析物理过程(2)引导学生回答并归纳:第一阶段,M做自由落体运动机械能守恒m不动,直到M开始接触m为止再下面一个阶段,M与m以共同速度开始向地层内运动阻力F做负功,系统机械能损失提问:第一阶段结束时,M有速度,而m速度为零。下
5、一阶段开始时,M与m就具有共同速度,即m的速度不为零了,这种变化是如何实现的呢?引导学生分析出来,在上述前后两个阶段中间,还有一个短暂的阶段,在这个阶段中,M和m发生了完全非弹性碰撞,这个阶段中,机械能(动能)是有损失的(3)让学生独立地写出完整的方程组第一阶段,对重锤有:第二阶段,对重锤及木楔有Mv+0=(M+m)第三阶段,对重锤及木楔有(4)小结:在这类问题中,没有出现碰撞两个字,碰撞过程是隐含在整个物理过程之中的,在做题中,要认真分析物理过程,发掘隐含的碰撞问题2、展示投影片2,其内容如下:如图所示,在光滑水平地面上,质量为M的滑块上用轻杆及轻绳悬吊质量为m的小球,此装置一起以速度v0向
6、右滑动另一质量也为M的滑块静止于上述装置的右侧当两滑块相撞后,便粘在一起向右运动,则小球此时的运动速度是多少?组织学生认真读题,并给三分钟思考时间(1)提问学生解答方案,可能出现的错误有:在碰撞过程中水平动量守恒,设碰后共同速度为v,则有(M+m)v0+0(2M+m)v解得,小球速度 (2)教师明确表示此种解法是错误的,提醒学生注意碰撞的特点:即宏观没有位移,速度发生变化,然后要求学生们寻找错误的原因(3)总结归纳学生的解答,明确以下的研究方法:碰撞之前滑块与小球做匀速直线运动,悬线处于竖直方向两个滑块碰撞时间极其短暂,碰撞前、后瞬间相比,滑块及小球的宏观位置都没有发生改变,因此悬线仍保持竖直
7、方向碰撞前后悬线都保持竖直方向,因此碰撞过程中,悬线不可能给小球以水平方向的作用力,因此小球的水平速度不变结论是:小球未参与滑块之间的完全非弹性碰撞,小球的速度保持为v0(4)小结:由于碰撞中宏观无位移,所以在有些问题中,不是所有物体都参与了碰撞过程,在遇到具体问题时一定要注意分析与区别3、展示投影片3,其内容如下:在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是pA=5kgm/s,pB=7kgm/s,如图所示若能发生正碰,则碰后两球的动量增量pA、pB可能是( )ApA=-3kgm/s;pB =3kgm/sBpA=3kgm/s;pB =3kgm/sCpA=-1
8、0kgm/s;pB =10kgm/sDpA=3kgm/s;pB =-3kgm/s组织学生认真审题(1)提问:解决此类问题的依据是什么?在学生回答的基础上总结归纳为:系统动量守恒;系统的总动能不能增加;系统总能量的减少量不能大于发生完全非弹性碰撞时的能量减少量;碰撞中每个物体动量的增量方向一定与受力方向相同;如碰撞后向同方向运动,则后面物体的速度不能大于前面物体的速度(2)提问:题目仅给出两球的动量,如何比较碰撞过程中的能量变化?帮助学生回忆的关系(3)提问:题目没有直接给出两球的质量关系,如何找到质量关系?要求学生认真读题,挖掘隐含的质量关系,即A追上B并相碰撞,所以,即 ,(4)最后得到正确
9、答案为A4、展示投影片4,其内容如下:如图所示,质量为m的小球被长为L的轻绳拴住,轻绳的一端固定在O点,将小球拉到绳子拉直并与水平面成角的位置上,将小球由静止释放,则小球经过最低点时的即时速度是多大?组织学生认真读题,并给三分钟思考时间(1)提问学生解答方法,可能出现的错误有:认为轻绳的拉力不做功,因此过程中机械能守恒,以最低点为重力势能的零点,有得(2)引导学生分析物理过程第一阶段,小球做自由落体运动,直到轻绳位于水平面以下,与水平面成角的位置处为止在这一阶段,小球只受重力作用,机械能守恒成立下一阶段,轻绳绷直,拉住小球做竖直面上的圆周运动,直到小球来到最低点,在此过程中,轻绳拉力不做功,机
10、械能守恒成立提问:在第一阶段终止的时刻,小球的瞬时速度是什么方向?在下一阶段初始的时刻,小球的瞬时速度是什么方向?在学生找到这两个速度方向的不同后,要求学生解释其原因,总结归纳学生的解释,明确以下观点:在第一阶段终止时刻,小球的速度竖直向下,既有沿下一步圆周运动轨道切线方向(即与轻绳相垂直的方向)的分量,又有沿轨道半径方向(即沿轻绳方向)的分量在轻绳绷直的一瞬间,轻绳给小球一个很大的冲量,使小球沿绳方向的动量减小到零,此过程很类似于悬挂轻绳的物体(例如天花板)与小球在沿绳的方向上发生了完全非弹性碰撞,由于天花板的质量无限大(相对小球),因此碰后共同速度趋向于零在这个过程中,小球沿绳方向分速度所
11、对应的一份动能全部损失了因此,整个运动过程按机械能守恒来处理就是错误的(3)要求学生重新写出正确的方程组解得(4)小结:很多实际问题都可以类比为碰撞,建立合理的碰撞模型可以很简洁直观地解决问题下面继续看例题5、展示投影片5,其内容如下:如图所示,质量分别为mA和mB的滑块之间用轻质弹簧相连,水平地面光滑mA、mB原来静止,在瞬间给mB一很大的冲量,使mB获得初速度v0,则在以后的运动中,弹簧的最大势能是多少? 在学生认真读题后,教师引导学生讨论(1)mA、mB与弹簧所构成的系统在下一步运动过程中能否类比为一个mA、mB发生碰撞的模型?(因系统水平方向动量守恒,所以可类比为碰撞模型)(2)当弹性
12、势能最大时,系统相当于发生了什么样的碰撞?(势能最大,动能损失就最大,因此可建立完全非弹性碰撞模型)经过讨论,得到正确结论以后,要求学生据此而正确解答问题,得到结果为五、板书设计16.4 碰 撞一、碰撞的特点1、碰撞过程中动量守恒2、碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变3、碰撞过程中,系统的总动能只能不变或减少,不可能增加二、碰撞的分类 弹性碰撞和非弹性碰撞六、课后作业 优化方案七、教学辅助手段 投影片,多媒体辅助教学设备八、课后反思 碰撞其实是对动量守恒定律的应用,学生应熟知是哪种碰撞,列什么样的方程,教师在讲解的过程中尽量放慢速度,条理清晰,引导学生形成
13、物理思维165 反冲运动 火箭一、三维目标知识与技能1、进一步巩固动量守恒定律2、知道反冲运动和火箭的工作原理,了解反冲运动的应用3、了解航天技术的发展和应用过程与方法理解反冲运动的物理实质,能够运用动量守恒定律分析、解决有关反冲运动的问题情感、态度与价值观培养学生动手动脑的能力,发掘学生探索新知识的潜能二、教学重点运用动量守恒定律认识反冲运动的物理实质三、教学难点动量守恒定律的应用四、教学过程(一)引入新课教师:用实验方法引入新课:演示实验1:老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围演示实验2:用薄铝箔卷成一个细管,一端封闭
14、,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去演示实验3:把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来呢?看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。(二)进行新课1、反冲运动(1)分析:细管为什么会向后退? 教师:引导学生自学书本,展开讨论,得出结论: 当气体从管内喷
15、出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动(2)分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。学生:交流,举例,并说明其工作原理。如:喷气式飞机、我国人民引以为荣的运载火箭等教师:为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验学生:分析,礼花为什么会上天?教师:在学生回答的基础上进行小结火箭就是根据这个原理制成的2、火箭教师:指导学生看书,对照书上“三级火箭”图,介绍火箭的基本构造和工作原理播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,
16、使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情教师:在此基础上,指导学生阅读课后阅读材料航天技术的发展和宇宙航行五、板书设计165 反冲运动 火箭反冲运动:如果一个静止的物体在内力的作用下分裂为铝箔纸,火柴和支架,反击式水轮机转轮的原理模型,礼花,有关航天发射、空间站等的录像带剪辑,投影片,多媒体辅助教学设备(四)作业:“问题与练习”13题教学体会思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花
17、,水中月。171 能量量子化:物理学的新纪元新课标要求(一)知识与技能1了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系3了解能量子的概念(二)过程与方法了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。教学重点能量子的概念教学难点黑体辐射的实验规律教学方法教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备课时安排1 课时教学
18、过程(一)引入新课教师:介绍能量量子化发现的背景:(多媒体投影,见课件。)19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的 Maxwell方程。另外还找到了力、电、光、声-等都遵循的规律-能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。”也就是说:物理学已经没有什么新东西了,
19、后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了!但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,-”这两朵乌云是指什么呢?一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。然而, 事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路, 柳暗花明又一村”。点出课题:我们这节课就来体验物理学新纪元的到来能量量子化的发现(二)进行新课1黑体与黑体辐射教师:在了解什么
20、是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。学生:阅读教材关于热辐射的描述。教师:通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。(1)热辐射现象固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。例如:铁块 温度 从看不出发光到暗红到橙色到黄白色从能量转化的角度来认识,是热能转化为电磁能的过程。(2)黑体教师:除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。黑体模型概念
21、:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。教师:课件展示黑体模型。不透明的材料制成带小孔的的空腔,可近似看作黑体。如图所示。研究黑体辐射的规律是了解一般物体热辐射性质的基础。2黑体辐射的实验规律教师:引导学生阅读教材“黑体辐射的实验规律”,接合课件展示,讲解黑体辐射的实验规律。如图所示。黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。教师:提出问题,设置疑问。怎样解释黑体辐射的实验规律呢?在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞
22、利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。课件展示:瑞利-金斯线。见课件。0 1 2 3 4 5 6(m)1700K1500K1300K1100K实验结果3能量子:超越牛顿的发现教师:利用已有的理论解释黑体辐射的规律,导致了荒谬的结果。必然会促使人们去发现新的理论。这就是能量子概念。1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一
23、最小能量(称为能量子)的整数倍,即:, 1,2,3,. n,n为正整数,称为量子数。对于频率为的谐振子最小能量为这个最小能量值,就叫做能量子课件展示:普朗克的能量子假说和黑体辐射公式(1)黑体辐射公式1900.10.19 普朗克在德国物理学会会议上提出一个黑体辐射公式普朗克后来又为这种与经典物理格格不入的观念深感不安,只是在经过十多年的努力证明任何复归于经典物理的企图都以失败而告终之后,他才坚定地相信h的引入确实反映了新理论的本质。1918年普朗克荣获了诺贝尔物理学奖。他的墓碑上只刻着他的姓名和黑体辐射的研究卓有成效地展现在人们的眼前,紫外灾难的疑点找到了,为人类解决了一大难题。使热爱科学的人们又一次倍感欣慰,但真理与谬误之争就此平息了吗?没有。物理难题:1888年,霍瓦(Hallwachs)发现一个带负电的金属板被紫外光照射会放电。近10年以后,1897年,汤姆孙发现了电子 ,此时,人们认识到那就是从金属表面射出的电子
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100