1、此文档仅供收集于网络,如有侵权请联系网站删除习题22.1选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。(B)它的动量不变,对圆心的角动量不断改变。(C)它的动量不断改变,对圆心的角动量不变。(D)它的动量不断改变,对圆心的角动量也不断改变。答案:C(2) 质点系的内力可以改变(A)系统的总质量。(B)系统的总动量。(C)系统的总动能。(D)系统的总角动量。答案:C(3) 对功的概念有以下几种说法:保守力作正功时,系统内相应的势能增加。质点运动经一闭合路径,保守力对质点作的功为零。作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。在上述说法中:
2、(A)、是正确的。(B)、是正确的。(C)只有是正确的。(D)只有是正确的。答案:C2.2填空题(1) 某质点在力(SI)的作用下沿x轴作直线运动。在从x=0移动到x=10m的过程中,力所做功为。答案:290J(2) 质量为m的物体在水平面上作直线运动,当速度为v时仅在摩擦力作用下开始作匀减速运动,经过距离s后速度减为零。则物体加速度的大小为,物体与水平面间的摩擦系数为。答案:(3) 在光滑的水平面内有两个物体A和B,已知mA=2mB。(a)物体A以一定的动能Ek与静止的物体B发生完全弹性碰撞,则碰撞后两物体的总动能为;(b)物体A以一定的动能Ek与静止的物体B发生完全非弹性碰撞,则碰撞后两物
3、体的总动能为。答案:2.3 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动;(2)质点作匀减速直线运动;(3)质点作匀速圆周运动;(4)质点作匀加速圆周运动。解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反;(3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。2.4 举例说明以下两种说法是不正确的:(1)物体受到的摩擦力的方向总是与物体的运动方向相反;(2)摩擦力总是阻碍物体运动的。解:(1)人走路时,所受地面的摩擦力与人的运动方向
4、相同;(2)车作加速运动时,放在车上的物体受到车子对它的摩擦力,该摩擦力是引起物体相对地面运动的原因。2.5质点系动量守恒的条件是什么?在什么情况下,即使外力不为零,也可用动量守恒定律近似求解?解:质点系动量守恒的条件是质点系所受合外力为零。当系统只受有限大小的外力作用,且作用时间很短时,有限大小外力的冲量可忽略,故也可用动量守恒定律近似求解。2.6在经典力学中,下列哪些物理量与参考系的选取有关:质量、动量、冲量、动能、势能、功?解:在经典力学中,动量、动能、势能、功与参考系的选取有关。2.7 一细绳跨过一定滑轮,绳的一边悬有一质量为的物体,另一边穿在质量为的圆柱体的竖直细孔中,圆柱可沿绳子滑
5、动今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度下滑,求,相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计)解:因绳不可伸长,故滑轮两边绳子的加速度均为,其对于则为牵连加速度,又知对绳子的相对加速度为,故对地加速度, 题2.7图由图(b)可知,为 又因绳的质量不计,所以圆柱体受到的摩擦力在数值上等于绳的张力,由牛顿定律,有 联立、式,得讨论 (1)若,则表示柱体与绳之间无相对滑动(2)若,则,表示柱体与绳之间无任何作用力,此时, 均作自由落体运动2.8 一个质量为的质点,在光滑的固定斜面(倾角为)上以初速度运动,的方向与斜面底边的水平
6、线平行,如图所示,求这质点的运动轨道解: 物体置于斜面上受到重力,斜面支持力.建立坐标:取方向为轴,平行斜面与轴垂直方向为轴.如题2.8图.题2.8图方向: 方向: 时 由、式消去,得2.9 质量为16 kg 的质点在平面内运动,受一恒力作用,力的分量为6 N,-7 N,当0时,0,-2 ms-1,0求当2 s时质点的(1)位矢;(2)速度解: (1)于是质点在时的速度(2)2.10 质点在流体中作直线运动,受与速度成正比的阻力(为常数)作用,=0时质点的速度为,证明(1) 时刻的速度为;(2) 由0到的时间内经过的距离为()1-;(3)停止运动前经过的距离为;(4)当时速度减至的,式中m为质
7、点的质量答: (1) 分离变量,得即 (2) (3)质点停止运动时速度为零,即t,故有 (4)当t=时,其速度为即速度减至的.2.11 一质量为的质点以与地的仰角=30的初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量解: 依题意作出示意图如题2.11图题2.11图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对轴对称性,故末速度与轴夹角亦为,则动量的增量为由矢量图知,动量增量大小为,方向竖直向下2.12 一质量为的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞并在抛出1 s后,跳回到原高度,速度仍是水平方向,速度大小也与
8、抛出时相等求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为因小球为平抛运动,故小球落地的瞬时向下的速度大小为,小球上跳速度的大小亦为设向上为轴正向,则动量的增量方向竖直向上,大小 碰撞过程中动量不守恒这是因为在碰撞过程中,小球受到地面给予的冲力作用另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒2.13 作用在质量为10 kg的物体上的力为N,式中的单位是s,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量(2)为了使这力的冲量为200 Ns,该力应在这物体上作用多久,试就一原来静止的
9、物体和一个具有初速度ms-1的物体,回答这两个问题解: (1)若物体原来静止,则,沿轴正向,若物体原来具有初速,则于是,同理, ,这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理(2)同上理,两种情况中的作用时间相同,即亦即 解得,(舍去)2.14 一质量为的质点在平面上运动,其位置矢量为求质点的动量及0 到时间内质点所受的合力的冲量和质点动量的改变量解: 质点的动量为将和分别代入上式,得, ,则动量的增量亦即质点所受外力的冲量为2.15 一颗子弹由枪口射出时速率为,当子弹在枪筒内被加速时,它所受的合
10、力为 F =()N(为常数),其中以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量(3)求子弹的质量解: (1)由题意,子弹到枪口时,有,得(2)子弹所受的冲量将代入,得(3)由动量定理可求得子弹的质量2.16 一炮弹质量为,以速率飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为,且一块的质量为另一块质量的倍,如两者仍沿原方向飞行,试证其速率分别为+, -证明: 设一块为,则另一块为,及于是得 又设的速度为, 的速度为,则有 联立、解得 将代入,并整理得于是有 将其代入式,有又,题述爆炸后,两弹片仍沿原方向飞行,故只
11、能取证毕2.17 设(1) 当一质点从原点运动到时,求所作的功(2)如果质点到处时需0.6s,试求平均功率(3)如果质点的质量为1kg,试求动能的变化解: (1)由题知,为恒力, (2) (3)由动能定理,2.18 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同题2.18图解: 以木板上界面为坐标原点,向内为坐标正向,如题2.18图,则铁钉所受阻力为第一锤外力的功为 式中是铁锤作用于钉上的力,是木板作用于钉上的力,在时,设第二锤外力的功为,则同理,有 由题意,有 即
12、所以, 于是钉子第二次能进入的深度为2.19 设已知一质点(质量为)在其保守力场中位矢为点的势能为, 试求质点所受保守力的大小和方向解: 方向与位矢的方向相反,方向指向力心2.20 一根劲度系数为的轻弹簧的下端,挂一根劲度系数为的轻弹簧,的下端又挂一重物,的质量为,如题2.20图求这一系统静止时两弹簧的伸长量之比和弹性势能之比题2.20图解: 弹簧及重物受力如题2.20图所示平衡时,有又 所以静止时两弹簧伸长量之比为弹性势能之比为2.21 (1)试计算月球和地球对物体的引力相抵消的一点,距月球表面的距离是多少?地球质量5.981024kg,地球中心到月球中心的距离3.84108m,月球质量7.
13、351022kg,月球半径1.74106m(2)如果一个1kg的物体在距月球和地球均为无限远处的势能为零,那么它在点的势能为多少? 解: (1)设在距月球中心为处,由万有引力定律,有经整理,得= 则点处至月球表面的距离为 (2)质量为的物体在点的引力势能为2.22 如题2.22图所示,一物体质量为2kg,以初速度3ms-1从斜面点处下滑,它与斜面的摩擦力为8N,到达点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度题2.22图解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。则由功能原理,有式中,再代入有关数据,解得再次运用功能原理,求木
14、块弹回的高度代入有关数据,得 ,则木块弹回高度2.23 质量为的大木块具有半径为的四分之一弧形槽,如题2.23图所示质量为的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度 题2.23图解: 从上下滑的过程中,机械能守恒,以,地球为系统,以最低点为重力势能零点,则有又下滑过程,动量守恒,以、为系统,则在脱离瞬间,水平方向有联立以上两式,得2.24 一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直证: 两小球碰撞过程中,机械能守恒,有即 题2.24图(a) 题2.24图(b)又碰撞过程中,动量守恒,即有亦即 由可作出矢量三角形如图(b),又由式可知三矢量之间满足勾股定理,且以为斜边,故知与是互相垂直的只供学习与交流
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100