ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:763.50KB ,
资源ID:3719699      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3719699.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(汽车后桥总体设计解读.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

汽车后桥总体设计解读.doc

1、目 录1概述结构方案的确定.11.1概述.11.2结构方案的分析及选择.22主减速器设计.5 2.1主减速器型式及选择.5 2.2主减速器齿轮的齿型.6 2.3主减速器齿轮设计和计算.8 2.4主减速器结构设计.253差速器及半轴设计.27 3.1差速器的功能原理.27 3.2差速器的其本参数的选择和设计计算.29 3.3半轴的设计.344 桥壳及壳附件设计.39 4.1驱动桥壳结构方案选择.39 4.2驱动桥壳强度计算.40 4.3驱动桥壳材料的选择.415制动器设计.43 5.1概述.43 5.2制动器的结构方案分析.44 5.3制动器主要参数的确定.45 5.4制动器主要结构元件.48参

2、考文献 .51谢辞 .52附录 .53 汽车后桥总体设计摘要:汽车后桥是汽车的驱动部分,是整个汽车传动系的最末端,对汽车的性能起着至关重要的作用。根据车桥能否传递驱动力,汽车车桥分为驱动桥和从动桥。驱动桥的结构型式按齐总体布置来说共有三种,即普通的非断开式驱动桥,带有摆动半轴的非断开式驱动桥和断开式驱动桥。本设计对象是小型低速载货汽车的后驱动桥。本设计完成了小型低速载货汽车的后驱动桥中主减速器、差速器、驱动车轮的传动装置及桥壳等部件的设计。本文根据小型低速载货汽车的后驱动桥的要求,通过选型,确定了主减速器传动副类型,差速器类型,驱动桥半轴支承类型。通过计算计算,确定了主减速比,主、从动锥齿轮、

3、差速器、半轴以及桥壳的主要参数和结构尺寸。最后利用CAD软件绘制零部件装配图和装配总图并通过主要零部件的校核计算和对主要零部件二维绘图,确定所设计的能够满足设计要求。关键词:汽车后桥;驱动桥;主减速器;差速器随着我国农村和城乡经济的不断发展,交通运输已经不再仅限于畜力和人力,汽车几乎完全代替了畜力和人力。轻型货车凭借其运输灵活、快捷、性价比高的优势被广泛应用于运输事业,包括家用运输和工业运输。我国的汽车工业发展迅速,历经四十余年,汽车产量已居于世界前列,但是在产品技术开发上还依旧处于落后状况。通过结合我国实际,总结自己的经验,又广泛吸收国外先进技术以及具有前瞻性的技术工具书,对于提高我国汽车行

4、业技术水平将具有格外重要的意义。作为一位机械设计制造及其自动化专业的毕业生,我们应该牢牢掌握机械设计与制造的基本知识及技能。本次毕业设计给我们提供了一个非常重要的实践机会。这本说明书记录了我这次毕业设计的主要内容和步骤,较详细地说明了汽车后桥的设计流程。1 概述-结构方案的确定1.1 概述驱动桥是汽车传动系中的主要部件之一。它位于传动系统的末端,其基本功用是增大由传动轴传来的转矩,将转矩分配给左、右驱动车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。在一般的汽车结构中,驱动桥主要有主减速器、差速器、驱动车轮的传

5、动装置和驱动桥壳等部件组成,保证当变速器置于最高档时,在良好的道路上有中够的牵引力以克服行驶阴力和获得汽车的最大车速,这主要取决于驱动桥主减速器的传动比。虽然在汽车总体设计时,从整车性能出发确定了驱动桥的传动比,然而用什么型式的驱动桥,什么结构的主减速器和差速器等在驱动桥设计时要具体考虑的;绝大多数的发动机在汽车上是纵置的,为使扭矩传给车轮,驱动桥必须改变扭矩的方向,同时根据车辆的具体要求解决左右车轮的扭矩分配,如果是多桥驱动的汽车亦同时要考虑各桥间的扭矩分配问题。整体式驱动桥一方面需要承担汽车的载荷,另一方面车轮上的作用力以及传递扭矩所产生的反作用力矩皆由驱动桥承担,所以驱动桥的零件必须具有

6、足够的刚度和强度,以保证机件可靠的工作。驱动桥还必须满足通过性急平顺性的要求。采用断开式驱动桥,可以使桥壳离地间隙增加,非簧载质量减轻等均是从这方面考虑;前桥驱动或多桥驱动的转向驱动轴要既能驱动又能转向。所以,驱动桥的设计必须满足如下基本要求:1) 所选择的主减速比应能满足汽车在给定使用条件下具有最佳的动力性和燃油经济性; 2) 结构简单、维修方便,机件工艺性好,制造容易,拆装、调整方便;3) 在各种载荷及转速工况有高的传动效率;4) 与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调; 5) 驱动桥各零部件在保证其刚度、强度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路

7、面对驱动桥的冲击载荷,从而改善汽车的平顺性; 6) 轮廓尺寸不大以便于汽车总体布置并与所要求的驱动桥离地间隙相适应;7) 齿轮与其它传动件工作平稳,噪声小。1.2结构方案分析及选择不同形式的汽车,主要体现在轴数、驱动形式以及布置形式上有区别:汽车可以有两轴、三轴、四轴甚至更多的轴数。影响选取轴数的因素主要有汽车的总质量;汽车驱动形式有42、44、62、64、66、84、88等。而采用42驱动形式的汽车结构简单、制造成本低,多用于轿车和总质量小些的公路用车辆上。我们设计的汽车为轻型的货车,故只需采用42后桥驱动方式就能满足要求。驱动桥的结构形式与驱动车轮的悬架形式密切相关。当车轮采用非独立悬架时

8、,驱动桥应为非断开式(或称为整体式)。即驱动桥壳是一根连接左右驱动车轮的刚性空心梁。而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。当采用独立悬架时,为保证运动协调,驱动桥应为断开式。这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架或车身作上下摆动,车轮传动装置采用万向节传动。为了防止运动干涉,应采用滑动花键轴或一种允许两轴能有适量轴向移动的万向传动机构。图1.1 整体式驱动桥1-主减速器 2-套筒 3-差速器 4、7-半轴-调整螺母-调整垫片-桥壳具有桥壳的非断开式驱动桥结构简单,制造工艺性好,

9、成本低,工作可靠。维修调整容易,广泛应用于各种载货汽车、客车及多数的越野汽车和部分小轿车上。但整个驱动桥均属于簧下质量。对汽车平顺性和降低动载荷不利。断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙,减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均车速,减小了汽车在行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增强了车轮的抗侧滑能力; 与之相配合的独立悬架导向机构设计得合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。 这种驱动桥在轿车和高通过性的越野汽车上应用相当广泛。图1.2 非断开式驱动桥本课题要求

10、设计2吨轻型货车的驱动桥,根据结构、成本和工艺等特点,驱动桥我们采用整体式结构,这样成本低,制造加工简单,便于维修。2主减速器设计2.1主减速器型式及选择驱动桥主减速器为适应使用要求发展多种 结构型式:如单级主减速器、双级主减速器、和单级主减速器加轮边减速等。(1) 单级主减速器常由一对锥齿轮所组成。这对锥齿轮的传动比是根据整车动力性和燃油经济性的要求来选定的。它结构简单,质量轻,所以在可能条件下尽量采用单级主减速器的型式。然而单级主减速器的传动比一般在3.56.7,太大的传动比将会使从动锥齿轮的尺寸过大,影响驱动桥壳下的离地间隙。离地间隙越小,汽车通过性就越差,这也就限制了从动锥齿轮的最大尺

11、寸。(2) 双级减速器是由第一级圆锥齿轮副和第二级圆柱齿轮副或第一级圆柱齿轮副和第二级圆锥齿轮副所组成。采用双级主减速器可达到两个目的:一是可获得较大的传动比610,其二是采用双级减速器后第二级的传动比可以小一些,由此第二级的从动齿轮尺寸在差速器安装尺寸允许情况下可以相应减小,由此减小桥壳的外形尺寸,增加了离地间隙。然而双级主减速器的重量及制造成本都比单级主减速器要高很多。(3) 双速主减速器内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速比的大小来选定的。大的主减速比用于汽车满载行驶或

12、在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、 半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。但是,该减速器的成本也相当高的。(4) 单级主减速器加轮边减速器,越野车、重型矿用自卸车和重型货车需要减速比更大的驱动桥,同时也要很大的离地间隙,因此发展了轮边减速器。于是驱动桥分成两次减速具有两个减速比主减速传动比和轮边减速器传动比。相对这时的主减速器传动比要比没有轮边减速的主减速器传动比要大得多。其结果使驱动桥中央部分的外形尺寸减小很多,相对地增加了离地间隙。同时,在主减速器后和轮边减速器前的零件如差速器、半轴等载荷大大减少,

13、其零件尺寸也相应地减小。它能缩短桥中心到连接传动轴凸缘的距离,能减少传动轴的夹角。当然这种减速器结构复杂,制造装配精度要求高,成本自然也是普通主减速器的几倍。根据以上信息,针对我们的普通的轻型货车,选择单级锥齿轮主减速器就满足要求。2.2主减速器齿轮的齿型汽车主减速器广泛采用的是螺旋圆锥齿轮,它包括圆弧齿锥齿轮、准双曲面齿轮、延摆线齿锥齿轮等多种形式。图1.3 螺旋锥齿轮与双曲面齿轮传动(a)螺旋锥齿轮传动;(b)双曲面齿轮传动螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合

14、,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。圆弧齿锥齿轮一般采用格里森制。双曲面齿轮传动双曲面齿轮传动的主、从动齿轮的轴线相互垂 直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距正的存在,使主动齿轮螺旋角1大于从动齿轮螺旋角 2。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比: F2/F 1 = cos 2/cos 1 式中, F 1 、 F 2 分别为主、从动齿轮的

15、圆周力; 1 、 2 分别为主、从动齿轮的螺旋角。 双曲面齿轮传动比为: 式中, 为双曲面齿轮传动比; r1 、 r 2 分别为主、从动齿轮平均分度圆半径。对于圆弧锥齿轮,令 K = cos 2 / cos 1 ,则传动比为: 由于 1 2 ,所以系数K1, 一般为1.251.5。这说明:当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮小,因而有较大的离地间隙。 另外,双曲面齿轮传动

16、比螺旋锥齿轮传动还具有如下特点: 1) 在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。 2) 沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。3) 齿面间大的压力和摩擦力,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。因此,双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。综上信息,考虑到生产条件、材料问题、以及经济性问题,我们选择采用格里森圆弧齿锥齿轮。2.3主减速器齿轮设计和计算齿轮型式选定后可进行载荷计算、参数初步计算、齿轮几何尺寸计算和强度计算等等,并根据计算结果拟定齿轮工

17、作图。2.3.1载荷计算影响汽车驱动桥锥齿轮副合理设计的重要因素之一是要合适地选择齿轮副上所受的扭矩。过去计算扭矩是根据发动机的最大输出扭矩来推算出从动锥齿轮上的扭矩,或者根据轮胎不打滑时的最大附着力矩来计算,而这两种情况都比较极端,它不能反映齿轮副在日常工作时所受的实际载荷。一种新的分析驱动桥计算扭矩的方法是从日常工作载荷和整车性能出发来考虑的,这种计算扭扭矩称为性能扭矩或日常行驶扭矩。除那些具有高性能的运动汽车外,用这一计算扭矩来确定一般驱动桥齿轮副的尺寸是比较合适的。在计算载荷之前必须知道发动机的最大转矩Memax和确定主传动比。由汽车总体设计得:轮胎型号为7.00-20 10PR 12

18、1/117 G,轮胎滚动半径0.43m;发动机型号:新柴495B发动机最大转矩N/m,r/min,最大功率Kw,最高车速Km/h。可按下式计算确定:Nm式中,取1.1 ;主减速比的确定: 取。下面分别介绍三种确定计算扭矩的方法:) 按驱动轮打滑扭矩确定从动锥齿轮载荷 式中,G2汽车满载时驱动桥给水平地面的最大负荷, N; 加速时重量转移系数,1.11.2,取1.1; 轮胎的滚动半径,m; 主减速器从动齿轮到驱动车轮之间的传动比,取; 主减速器从动齿轮到驱动车轮之间的传动效率,取0.95; 轮胎对路面的附着系数,安装一般轮胎的公路用汽车取0.85。) 按最大使用扭矩确定从动锥齿轮载荷式中,变速器

19、一档传动比,取6.75;主减速器传动比,5.625;分动器传动比,此处不采用分动器,故取;超载系数,取;考虑由于接合离合器发生冲击的超载系数,取;液力变矩器变矩比,这里不采用液力变矩器,故取;-驱动桥数目;发动机到主减速器的传动效率,取为0.95 。) 按日常行驶扭矩确定从动锥齿轮载荷式中,汽车满载时的总重力,N;道路滚动阻力系数,货车取0.0150.020,取0.018;汽车正常使用时的平均爬坡能力系数,通常货车取0.050.09,取0.07;汽车的性能系数,故取。对于最大计算转矩,应取发动机最大扭矩和驱动轮打滑扭矩两者的最小值;当按最大扭矩计算齿轮强度时,所得应力不超过齿轮材料应力允许值。

20、当按日常行驶扭矩计算齿轮强度时,所得应力不应超过齿轮材料的疲劳极限;2.3.2 主、从动齿轮主要参数的选择(1) 从动齿轮齿数的选择选择主、从动锥齿轮齿数时应考虑Z1、Z2之间应避免有公约数,以便在齿轮在使用过程中各齿之间都能互相啮合,起到自动磨合作用并均匀磨合的效果。为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于 40。根据经验及齿轮传动设计手册,初步拟定我们设计的主、从动齿轮齿数Z1=8、Z2=45。(2) 从动齿轮大端分度圆直径和端面模数的确定对于单级主减速器,对驱动桥壳尺寸有影响,大将影响桥壳的离地间隙;小则影响跨置式主动齿轮的前支承座的 安装空间和差速器的安装

21、。 可根据经验公式初选: ,mm式中, -从动锥齿轮大端分度圆直径(mm) ; -直径系数, 一般为 13.016,取15; -从动锥齿轮的计算转矩 N m) ( )代入数据:mm从动锥齿轮分度圆直径选好后可按求得m=6.33,标准化为6.5。(3) 其它参数的确定表2.1名称代号计算公式和说明计算结果(mm)轴交角按需要确定,一般 10170,最常用90中点螺旋角通常=3540,最常用=35压力角标准大端分度圆直径d分锥角外锥距RR=148.54齿宽系数齿宽bb=43中点模数中点法向模数中点分度圆直径中点锥距切向变位系数,按查表得到径向变位系数,按查表得到顶隙cc=1.222齿顶高齿根高工作

22、齿高全齿高齿根角齿顶角顶锥角根锥角齿顶圆直径冠顶距A当时,当量齿数(参考齿轮传动设计手册)对计算数据的几点说明: 1)Z1的确定原则:为了磨合均匀,Z1、Z2之间应避免有公约数。为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于 40。为了啮合平稳、噪声小和具有高的疲劳强度,对于货车,Z1一般不少于6,对于轿车Z1一般不少于9,当主传动比较大时,尽量使Z1 取得小些,以便得到满意的离地间隙。对于不同的主传动比,Z1和 Z2应有适宜的搭配,可参阅一些优先值。 2)螺旋方向:从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。 主、从动锥齿轮的螺旋方向是相反的。螺

23、旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速器挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可以使主、从动齿轮有分离趋势,防止轮齿卡死而损坏。当变速器在倒档时,轴向力方向改变,但此力因倒档偶尔应用故影响较小。如将主齿轮可靠定位,虽用倒档可避免齿轮卡住。根据上述原因及发动机为顺时针旋转,所以一般汽车主减速器所用的主动齿轮为左旋,而从动轮为右旋。 3)主、动锥齿轮的齿面宽和:一般推荐齿面宽的数值,对于螺旋锥齿轮b在1/4-1/3节锥距之间。主动齿比从动齿大10%左右,故主齿轮宽度为43,从动齿宽为48。主、从动锥齿轮齿面宽和锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮

24、轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖 圆角过小。这样,不但减小了齿根圆半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。2.3.3 主减速器螺旋锥齿轮强度校核锥齿轮要安全可靠地工作,必须有足够的强度和寿命。设计时应根据其所受载荷、尺寸大小验算其强度。齿轮的损坏形式有很多,常见的主要有齿轮折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。齿轮的使用寿命除与设计的正确与否有直接关系外,在实际生产中也往往是

25、由于材料、加工精度、热处理、装配调试以及使用条件不当造成损坏的。正确的设计只是减少或避免上述损坏的产生,强度计算是检验设计可靠性办法之一。目前强度计算多是近似的 ,在汽车行业中确定齿轮强度的主要依据是台架及道路试验,以及齿轮在实际使用中对情况的判断,而计算可作设计参考。随着计算机技术在汽车设计中的应用、试验设备与技术的发展,为有限寿命和有限元计算方法创造了条件,使计算更符合实际使用情况。下面是格里森齿轮验算性的强度计算方法:() 单位齿长上的圆周力在汽车工业的实践中,主减速器齿轮的表面耐磨性常常用齿轮上单位齿长的圆周力来估算。 (N/mm)式中,p-作用在齿轮上的圆周力,N; b-从动齿轮的齿

26、面宽,mm;按发动机最大转矩( Nmm)计算时为: (N/mm)式中,变速器传动比,常取一档或直接档的;主动齿轮节圆直径,mm;直接档:一档:故,齿轮单位齿长上的圆周力符合安全要求,通过验证。()齿轮弯曲强度计算螺旋锥齿轮的弯曲应力强度计算公式为:(N/mm)式中,计算转矩,(,对主动齿轮需将上述计算转矩按Nm转换;超载系数,取;尺寸系数,当端面模数mm,取;载荷分配系数,取1.02;质量系数,对驱动桥齿轮可取; J 计算弯曲应力的综合系数,查图4-9-32得,;许用弯曲应力,按和较小都计算时取700N/。主动齿轮:从动齿轮:故,齿轮弯曲强度符合安全要求,通过验证。()齿轮接触强度计算圆弧锥齿

27、轮的接触强度计算公式为:式中,材料的弹性系数,钢制齿轮副取232.6;主动齿轮计算转矩,Nm;超载系数,取;质量系数,对驱动桥齿轮可取; 载荷分配系数,取1.02;表面质量系数,取1;计算接触应力综合系数,查图4-9-36得0.133;许用接触应力,按和较小都计算时取2800N/。代入数据得:故,齿轮接触强度符合安全要求,通过验证。更多详细内容请联系3231885406,本论文通过答辩优秀范文!更多详细内容请联系3231885406,本论文通过答辩优秀范文!参考文献1 车辆工程手册编辑委员会编制.汽车工程手册设计篇m.北京:人民交通出版社,2001.52 王望于主编.汽车设计第三版m.北京:机

28、械工业出版社,2000.53 车辆机械手册委员会编著.机械设计手册第三版m.北京:机械工业出版社,2004.84 陈家瑞主编.汽车构造(第五版)m.北京:人民交通出版社,20055 王中亭主编.汽车概论(第二版)m.北京:机械工业出版社,20066 彭如恕主编.现代工程制图(第一版)m.长沙:国防工业出版社,20067 朱孝录主编.齿轮传动设计手册(第一版)m.北京:化学工业出版社,20058 孙桓,陈作模主编.机械原理(第七版)m.北京:高等教育出版社,20059 濮良贵,纪名刚主编.机械设计(第八版)m.北京:高等教育出版社,200510 于永泗,齐民主编.机械工程材料(第七版)m.大连:

29、大连理工大学出版社,200711 水根主编.机械制造工程学(第二版)m.北京:清华大学出版社,200412 成大先主编.机械设计手册m.北京:化学化工出版社,200413 曙程主编.金属切削机床(第一版)m.北京:机械工业出版社,199314 杨昂岳等主编.机械制造工程学m.长沙:国防科技大学出版社,200415 张展主编.机械设计通用手册第一版m.北京:中国劳动出版社,1994.516 谢铁邦主编.互换性与技术测量(第三版)m.武汉:华中科技大学出版社,199817 诸文农主编.底盘设计上册m.北京:机械工业出版社,1981.7谢 辞经过三个多月的努力,在彭老师细心的指导下,我终于完成了我的

30、任务,也给我的大学划上一个圆满的句号,更为即将踏上的旅程划出一道新的起跑线。毕业设计的目的是要我们把四年来学到的知识融汇贯通,紧密联系在一起。只有做到这些,才能够真正地层掌握住这些知识。只有这样,才能够合格地走上工作岗位。同时通过这次设计也可以检验自已的学习成果。毕业设计给我最大的收获是做设计要严谨和耐心。机械设计做的是毫米级别的工作,即使是平常的那些小错误都可能在实际工程、生产中造成严重的事故,导致失之毫里、差之千里的结果,大部分的尺寸、形状、结构都有相关的标准,不能凭着感觉做设计,那样是靠不住的,所以一个严谨的态度是作为一个设计者所必须的;其次,做设计要经常性地更正数据、换结构、选方案,这

31、些都是非常需要时间和精力的,而且有时候是繁琐的,这也同样要求我们要有很好的耐心,否则,容易烦躁,无法做出好的成果。通过真诚的合作,我们小组顺利完成了整辆2吨货车的设计。其中我主要负责后桥总成的设计,后桥是整个汽车的驱动桥,对汽车的性能起着至关重要的作用。由于经验不足,错误在所难免,还望各位老师和同学批评指正,指出其中的问题,以便我能及时改正,帮助我的成长,避免以后走上工作岗位后再犯同样的错误。 读书的好处1、行万里路,读万卷书。2、书山有路勤为径,学海无涯苦作舟。3、读书破万卷,下笔如有神。4、我所学到的任何有价值的知识都是由自学中得来的。达尔文5、少壮不努力,老大徒悲伤。6、黑发不知勤学早,白首方悔读书迟。颜真卿7、宝剑锋从磨砺出,梅花香自苦寒来。8、读书要三到:心到、眼到、口到9、玉不琢、不成器,人不学、不知义。10、一日无书,百事荒废。陈寿11、书是人类进步的阶梯。12、一日不读口生,一日不写手生。13、我扑在书上,就像饥饿的人扑在面包上。高尔基14、书到用时方恨少、事非经过不知难。陆游15、读一本好书,就如同和一个高尚的人在交谈歌德16、读一切好书,就是和许多高尚的人谈话。笛卡儿17、学习永远不晚。高尔基18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。刘向19、学而不思则惘,思而不学则殆。孔子20、读书给人以快乐、给人以光彩、给人以才干。培根

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服