ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:210.60KB ,
资源ID:3714790      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3714790.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2022届高三文科数学总复习课时提升作业(七)-2.4指数函数.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高三文科数学总复习课时提升作业(七)-2.4指数函数.docx

1、 温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时提升作业(七) 指 数 函 数 (25分钟 60分) 一、选择题(每小题5分,共25分) 1.等于(  ) A.-    B.     C.     D. 【解析】选A.由已知可得a≤0,所以原式= 2.(2021·北京模拟)y=ax-1+2(a>0且a≠1)的图象确定过点 (  ) A.(1,1) B.(1,3) C.(2,0) D.(4,0) 【解析】选B.由x-1=0,解得x=1,此时y=1+2=

2、3,即函数的图象过定点(1,3). 3.(2021·昆明模拟)设a=22.5,b=2.50,c=()2.5,则a,b,c的大小关系是(  ) A.a>c>b B.c>a>b C.a>b>c D.b>a>c 【解析】选C.b=2.50=1,c=()2.5=2-2.5, 则2-2.5<1<22.5,即c

3、)=2x-2,则函数y=|f(x)|的图象可能是  (  ) 【解析】选B.|f(x)|=|2x-2|= 易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),.又|f(x)|≥0,故选B. 【误区警示】本题易误选A或D,毁灭错误的缘由是误以为y=|f(x)|是偶函数. 5.当x∈[-2,2]时,ax<2(a>0,且a≠1),则实数a的范围是(  ) A.(1,) B.(,1) C.(,1)∪(1,) D.(0,1)∪(1,) 【解析】选C.x∈[-2,2]时,ax<2(a>0,且a≠1), 若a>1,y=ax是一个增函数

4、 则有a2<2,可得a<,故有1,故有

5、误. 【加固训练】函数y=的值域是    . 【解析】函数y= 令t=,则y=t2+t+1=(t+)2+, 由t=,知t>0, 由于函数y=(t+)2+在(0,+∞)上为增函数, 所以y>1,即函数的值域为(1,+∞). 答案:(1,+∞) 7.(2021·长春模拟)已知函数f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是    . 【解析】由于f(x)=a-x=()x,且f(-2)>f(-3),所以函数f(x)在定义域上单调递增,所以>1,解得0

6、解题提示】把f(x)看成两个函数的积,推断出的奇偶性,然后求解. 【解析】设g(x)=a+,t(x)=x2, 由于t(x)=x2是偶函数,而f(x)=x2是奇函数,所以g(x)=a+是奇函数, 又由于g(-x)=a+=a+, 所以a+=-对定义域内的一切实数都成立,解得a=. 答案: 三、解答题(每小题10分,共20分) 9.(2022·上海高考)设常数a≥0,函数f(x)=依据a的不同取值,争辩函数y=f(x)的奇偶性,并说明理由. 【解析】若f(x)为偶函数,则f(x)=f(-x)对任意x均成立,所以, 整理可得a(2x-2-x)=0, 由于2x-2-x不恒为0,所以

7、a=0,此时f(x)=1,x∈R,满足条件; 若f(x)为奇函数,则f(x)=-f(-x)对任意x均成立,所以, 整理可得a2-1=0,所以a=±1, 由于a>0,所以a=1, 此时f(x)=,x≠0,满足条件; 综上所述,a=0时,f(x)是偶函数;a=1时,f(x)是奇函数. 10.已知函数f(x)= (1)若a=-1,求f(x)的单调区间. (2)若f(x)有最大值3,求a的值. 【解析】(1)当a=-1时,f(x)=, 令g(x)=-x2-4x+3, 由于g(x)在(-∞,-2)上单调递增, 在(-2,+∞)上单调递减, 而y=在R上单调递减, 所以f(x)

8、在(-∞,-2)上单调递减, 在(-2,+∞)上单调递增, 即函数f(x)的递增区间是(-2,+∞), 递减区间是(-∞,-2). (2)令h(x)=ax2-4x+3,y=, 由于f(x)有最大值3,所以h(x)应有最小值-1, 因此必有解得a=1, 所以当f(x)有最大值3时,a的值等于1. 【加固训练】设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值. 【解析】令t=ax(a>0且a≠1), 则原函数化为y=(t+1)2-2(t>0). (1)当0

9、 所以f(t)max=f()=(+1)2-2=14. 所以(+1)2=16,所以a=-或a=. 又由于01时,x∈[-1,1],t=ax∈[,a], 此时f(t)在[,a]上是增函数. 所以f(t)max=f(a)=(a+1)2-2=14, 解得a=3(a=-5舍去).综上得a=或3. (20分钟 40分) 1.(5分)(2021·金华模拟)函数y=(0

10、1对称,且当x≥1时,f(x)=3x-1,则有(  ) A.f()f()>f(). 即f()>f()>f(). 【方法技巧】比较函数值大小的方法 (1)单调性法:先利用相关性质,将待比较函数

11、值调整到同一单调区间内,然后利用该函数在该区间上的单调性比较大小. (2)图象法:先利用相关性质作出函数的图象,再结合图象比较大小. 3.(5分)(2021·泰安模拟)若函数f(x)=kax-a-x(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(  ) 【解析】选C.由于函数f(x)=kax-a-x(a>0,a≠1)在(-∞,+∞)上是奇函数,则f(-x)+f(x)=0,即(k-1)(ax+a-x)=0,则k=1, 又由于函数f(x)=kax-a-x(a>0,a≠1)在(-∞,+∞)上是增函数,则a>1, 则g(x)=loga

12、x+k)=loga(x+1)的图象必过原点,且为增函数,故选C. 4.(12分)已知函数f(x)=2a·4x-2x-1. (1)当a=1时,求函数f(x)在x∈[-3,0]的值域. (2)若关于x的方程f(x)=0有解,求a的取值范围. 【解析】(1)当a=1时,f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,x∈[-3,0],则t∈[,1]. 故y=2t2-t-1=2(t-)2-,t∈[,1],故值域为[-,0]. (2)关于x的方程2a(2x)2-2x-1=0有解,等价于方程2am2-m-1=0在(0,+∞)上有解. 记g(m)=2am2-m-1, 当a

13、0时,解为m=-1<0,不成立. 当a<0时,开口向下,对称轴m=<0,过点(0,-1),不成立. 当a>0时,开口向上,对称轴m=>0,过点(0,-1),必有一个根为正,所以,a>0. 【一题多解】本题还有以下解法: 方程2am2-m-1=0可化为a=,所以a的范围即为函数g(m)= 在(0,+∞)上的值域,所以a>0. 5.(13分)(力气挑战题)设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数. (1)若f(1)>0,求不等式f(x2+2x)+f(x-4)>0的解集. (2)若f(1)=,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞

14、)上的最小值. 【解析】由于f(x)是定义域为R的奇函数,所以f(0)=0, 所以k-1=0,所以k=1.故f(x)=ax-a-x. (1)由于f(1)>0,所以>0,又a>0且a≠1,所以a>1,而当a>1时,y=ax和y=-a-x在R上均为增函数,所以f(x)在R上为增函数,原不等式化为:f(x2+2x)>f(4-x),所以x2+2x>4-x,即x2+3x-4>0,所以x>1或x<-4,所以不等式的解集为{x|x>1或x<-4}. (2)由于f(1)=,所以,即2a2-3a-2=0, 所以a=2或a=-(舍去), g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2.令t=2x-2-x(x≥1), 则t=h(x)在[1,+∞)上为增函数, 即h(x)≥h(1)=.所以g(t)=t2-4t+2=(t-2)2-2, 所以当t=2时,g(x)min=-2,此时x=log2(1+), 故当x=log2(1+)时,g(x)有最小值-2. 关闭Word文档返回原板块

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服