ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:61.63KB ,
资源ID:3714064      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3714064.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022版数学一轮复习(理科)人教A版-课时作业-探究课二-导数问题中的热点题型.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022版数学一轮复习(理科)人教A版-课时作业-探究课二-导数问题中的热点题型.docx

1、 (建议用时:80分钟)1(2021毕节二模)已知f(x)xln x(x0)(1)求f(x)的最小值(2)F(x)ax2f(x)(aR),争辩函数f(x)的单调性解(1)由f(x)xln x,得f(x)ln x1(x0),令f(x)0,得x.当x时,f(x)0;当x时,f(x)0,当x时,f(x)minln .(2)由题意及(1)知,F(x)ax2ln x1(x0),所以F(x)2ax(x0)当a0时,恒有F(x)0,则F(x)在(0,)上是增函数;当a0时,令F(x)0,即2ax210,解得0x;令F(x)0,即2ax210,解得x.综上,当a0时,F(x)在(0,)上是增函数;当a0时,F

2、(x)在上单调递增,在上单调递减2已知f(x)axln x,x(0,e,g(x),其中e是自然常数,aR.(1)争辩a1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)g(x);(3)是否存在正实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,请说明理由(1)解当a1时,f(x)xln x,x(0,e,f(x)1,x(0,e,当0x1时,f(x)0,此时f(x)的单调递减;当1xe时,f(x)0时,此时f(x)的单调递增f(x)的微小值为f(1)1.(2)证明f(x)的微小值为1,即f(x)在(0,e上的最小值为1,f(x)min1.又g(x),当0xe时,g

3、(x)0,g(x)在(0,e上单调递增g(x)maxg(e),f(x)ming(x)max,在(1)的条件下,f(x)g(x).(3)解假设存在正实数a,使f(x)axln x(x(0,e)有最小值3,则f(x)a,x(0,e当0e时,f(x)在上单调递减,在上单调递增,f(x)minf1ln a3,ae2,满足条件;当e时,f(x)在(0,e上单调递减,f(x)minf(e)ae13,a(舍去),所以,此时f(x)无最小值综上,存在实数ae2,使得当x(0,e时,f(x)有最小值3.3(2021南京调研)已知函数f(x)exmx,其中m为常数(1)若对任意xR有f(x)0恒成立,求m的取值范

4、围;(2)当m1时,推断f(x)在0,2m上零点的个数,并说明理由解(1)依题意,可知f(x)exm1,令f(x)0,得xm.故当x(,m)时,exm1,f(x)1,f(x)0,f(x)单调递增故当xm时,f(m)为微小值也是最小值令f(m)1m0,得m1,即对任意xR,f(x)0恒成立时,m的取值范围是(,1(2)当m1时,f(m)1m0,f(0)f(m)1时,g(m)em20,g(m)在(1,)上单调递增g(m)g(1)e20,即f(2m)0.f(m)f(2m)0,f(x)在(m,2m)上有一个零点故f(x)在0,2m上有两个零点4(2022北京卷)已知函数f(x)xcos xsin x,

5、x.(1)求证:f(x)0;(2)若ab对x恒成立,求a的最大值与b的最小值(1)证明由f(x)xcos xsin x,得f(x)cos xxsin xcos xxsin x.由于在区间上f(x)xsin x0,所以f(x)在区间上单调递减从而f(x)f(0)0.(2)解当x0时,“a”等价于“sin xax0”;“b”等价于“sin xbx0”令g(x)sin xcx,则g(x)cos xc.当c0时,g(x)0对任意x恒成立当c1时,由于对任意x,g(x)cos xc0,所以g(x)在区间上单调递减从而g(x)g(0)0对任意x恒成立当0c1时,存在唯一的x0使得g(x0)cos x0c0

6、.于是,当x变化时,g(x),g(x)在区间的变化状况如下:X(0,x0)x0g(x)0g(x)极大值由于g(x)在区间0,x0上是增函数,所以g(x0)g(0)0.进一步,“g(x)0对任意x恒成立”当且仅当g1c0,即0c.综上所述,当且仅当c时,g(x)0对任意x恒成立;当且仅当c1时,g(x)0对任意x恒成立所以,若ab对任意x恒成立,则a的最大值为,b的最小值为1.5已知函数f(x)x3x2(m21)x(xR),其中m0.(1)当m2时,求曲线yf(x)在点(3,f(3)处的切线方程;(2)若yf(x)在上存在单调递增区间,求m的取值范围;(3)已知函数yf(x)有三个互不相同的零点

7、0,x1,x2,且x1x2,若对任意的xx1,x2,f(x)f(1)恒成立,求m的取值范围解(1)m2时,f(x)x3x23x,f(x)x22x3,切线斜率kf(3)0,又f(3)9,切线方程为y9.(2)f(x)x22xm21,其对称轴为x1,则f(x)在(1,)单调递减,由条件知f0,m2,又m0,m.(3)f(x)(x0)(xx1)(xx2),x1,x2为方程x2xm210的两根,x1x23,且0,结合m0,解得m.x1x2,x2,下面争辩x1与1.若x11x2时,即1x1,x2,则f(1)(10)(1x1)(1x2),f(1)0,而f(x1)0,与条件冲突若1x1x2,则对xx1,x2

8、,f(x)x(xx1)(xx2)0,又f(x1)0,f(x)在x1,x2上的最小值为0.又f(x)f(1)恒成立,f(x)minf(1),即0f(1),m20m.由知,m的取值范围为.6(2021晋中模拟)已知函数f(x)ax2(2a1)x2ln x(aR)(1)若曲线yf(x)在x1和x3处的切线相互平行,求a的值;(2)求f(x)的单调区间;(3)设g(x)x22x,若对任意x1(0,2,均存在x2(0,2,使得f(x1)g(x2),求a的取值范围解f(x)ax(2a1)(x0)(1)由题意知f(1)f(3),即a(2a1)23a(2a1),解得a.(2)f(x)(x0)当a0时,x0,a

9、x10,在区间(0,2)上,f(x)0;在区间(2,)上,f(x)0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,)当0a时,2,在区间(0,2)和上,f(x)0;在区间上,f(x)0,故f(x)的单调递增区间是(0,2)和,单调递减区间是.当a时,f(x)0,故f(x)的单调递增区间是(0,)当a时,02,在区间和(2,)上,f(x)0;在区间上,f(x)0,故f(x)的单调递增区间是和(2,),单调递减区间是.(3)由题意知,在(0,2上有f(x)maxg(x)max.由已知得g(x)max0,由(2)可知, 当a时,f(x)在(0,2上单调递增,故f(x)maxf(2)2a2(2a1)2ln 22a22ln 2,所以2a22ln 20,解得aln 21,故ln 21a.当a时,f(x)在上单调递增;在上单调递减,故f(x)maxf 22ln a.由a可知ln aln ln 1,所以2ln a2,即2ln a2,所以,22ln a0,所以f(x)max0,综上所述,aln 21.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服