ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:215.50KB ,
资源ID:3711035      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3711035.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初三数学知识点复习汇总说课讲解.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初三数学知识点复习汇总说课讲解.doc

1、此文档仅供收集于网络,如有侵权请联系网站删除初三数学各章节重要知识点概要相似三角形1.比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质: (5)等比性质: 且2.三角形的重心三角形三条中线的交点叫做三角形的重心.(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍;(2)重心的画法:两条中线的交点.3、黄金分割是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC2ABBC),C点为黄金分割点.4、相似三角形判定平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成

2、的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.(5)相似三角形应用举例相似三角形的知识在实际生产和生活中有着广泛的应用,可以解决一些不能直接测量的物体的长度问题,加深学生对相似三角形的理解和认识.一元二次方程1. 一元二次方程的一般形式: a0时,ax2+bx+c=0叫一元二次方程的一般形式,研

3、究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a0)时,=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:0 有两个不等的实根; =0 有两个相等的实根;0 无实根; 4平均增长率问题-

4、应用题的类型题之一 (设增长率为x): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和.旋转1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1) 旋转前后的两个图形是全等形;(2) 两个对应点到旋转中心的距离相等(3) 两个对应点与旋转中心的连线段的夹角等于旋转角 3、中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心

5、对称,这个点叫做对称中心 这两个图形中的对应点叫做关于中心的对称点 4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分 (2)关于中心对称的两个图形是全等图形 5、中心对称图形:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心 6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(-x,-y)圆1、(要求深刻理解、熟练运用)1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理

6、” “弧径定理”“中垂定理”. 几何表达式举例: CD过圆心CDAB3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) AOB=COD AB = CD (2) AB = CDAOB=COD(3)4圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边

7、的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例:(1) ACB=AOB (2) AB是直径 ACB=90(3) ACB=90 AB是直径(4) CD=AD=BD ABC是Rt 5圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例: ABCD是圆内接四边形 CDE =ABCC+A =1806切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;几何表达式举例:(1) OC是半径OCABAB是切线(2)

8、 OC是半径AB是切线OCAB9相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.(1) (2)几何表达式举例:(1) PAPB=PCPD(2) AB是直径PCABPC2=PAPB11关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上. (1) (2)几何表达式举例:(1) O1,O2是圆心O1O2垂直平分AB(2) 1 、2相切O1 、A、O2三点一线12正多边形的有关计算:(1)中心角an ,半径RN , 边心距rn , 边长an

9、 ,内角bn , 边数n;(2)有关计算在RtAOC中进行.公式举例:(1) an =;(2) 二 定理:1不在一直线上的三个点确定一个圆.2任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三 公式:1.有关的计算:(1)圆的周长C=2R;(2)弧长L=;(3)圆的面积S=R2.(4)扇形面积S扇形 =;(5)弓形面积S弓形 =扇形面积SAOBAOB的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2rh; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S圆锥侧 =rR. (L=2r,R是圆锥母

10、线长;r是底面半径)四 常识:1 圆是轴对称和中心对称图形.2 圆心角的度数等于它所对弧的度数.3 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心;三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.4 直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交 dr ; 直线与圆相切 d=r ; 直线与圆相离 dr.5 证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.三角函数1.正弦、余弦、正切的定义如图:在RtABC中,C=90,如果锐角A确定:锐角A的对边与斜边的比叫做A的正弦,记作sinA,即;锐角A的邻边与

11、斜边的比叫做A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做A的正切,记作tanA,即.函数值的取值范围是0sinA1,0cosA1,tanA0.2锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如A+B=90, 那么:sinA=cosB; cosA=sinB; 同角三角函数关系:sin2Acos2A=1;tanA=3.30、45、60角的三角函数值A304560sinAcosAtanA14、解直角三角形角角关系:两锐角互余,即A+B=90;边边关系:勾股定理,即;边角关系:锐角三角函数,即二次函数1、二次函数的定义一般地,如果是常数,那么叫做的二次函数.2、二次函数的图象与

12、性质a.二次函数由特殊到一般,可分为以下几种形式:;,其中;.(以上式子a0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()b.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.c.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧

13、;(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .d.用待定系数法求二次函数的解析式:(1)一般式:(a0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a0).(由此得根与系数的关系:).3、二次函数与一元二次方程的关系函数,当时,得到

14、一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解4、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.只供学习与交流

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服