1、平面图形的面积一、教学目标:1、进一步让同学深刻体会“分割、以直代曲、求和、靠近”求曲边梯形的思想方法;2、让同学深刻理解定积分的几何意义以及微积分的基本定理;3、初步把握利用定积分求曲边梯形面积的几种常见题型及方法。二、教学重难点:曲边梯形面积的求法及应用三、教学方法:探析归纳,讲练结合四、教学过程1、复习:(1)、求曲边梯形的思想方法是什么?(2)、定积分的几何意义是什么?(3)、微积分基本定理是什么? 2、定积分的应用(一)利用定积分求平面图形的面积例1计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。ABCDO解
2、:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。巩固练习 计算由曲线和所围成的图形的面积.例2计算由直线,曲线以及x轴所围图形的面积S.分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题与例 1 不同的是,还需把所求图形的面积分成两部分S1和S2为了确定出被积函数和积分的上、下限,需要求出直线与曲线的交点的横坐标,直线与 x 轴的交点解:作出直线,曲线的草图,所求面积为图1. 7一2 阴影部分的面积解方程组得直
3、线与曲线的交点的坐标为(8,4) . 直线与x轴的交点为(4,0). 因此,所求图形的面积为S=S1+S2.由上面的例题可以发觉,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限例3.求曲线与直线轴所围成的图形面积。 答案: 练习1、求直线与抛物线所围成的图形面积。答案:xyoy=x2+4x-32、求由抛物线及其在点M(0,3)和N(3,0)处的两条切线所围成的图形的面积。 略解:,切线方程分别为、,则所求图形的面积为3、求曲线与曲线以及轴所围成的图形面积。 略解:所求图形的面积为xxOy=x2ABC4、在曲线上的某点A处作一切线使之与曲线以
4、及轴所围成的面积为.试求:切点A的坐标以及切线方程. 略解:如图由题可设切点坐标为,则切线方程为,切线与轴的交点坐标为,则由题可知有,所以切点坐标与切线方程分别为(二)、归纳总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特殊留意图形面积与定积分不愿定相等,如函数的图像与轴围成的图形的面积为4,而其定积分为0.2、求曲边梯形面积的方法:画图,并将图形分割为若干个曲边梯形;对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;确定被积函数;求出各曲边梯形的面积和,即各积分的确定值的和。(三)、作业布置:五、教学反思: