ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:92.99KB ,
资源ID:3700385      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3700385.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高考数学(广东专用-理)一轮题库:第11章-第5讲--几何概型.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(广东专用-理)一轮题库:第11章-第5讲--几何概型.docx

1、第5讲 几何概型一、选择题1、如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?A. B.C. D. 解析 由于均匀的粒子落在正方形内任何一点是等可能的所以符合几何概型的条件。设A“粒子落在中间带形区域”则依题意得正方形面积为:2525625两个等腰直角三角形的面积为:22323529带形区域的面积为:62552996P(A)答案A2.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最终任凭停留在黑色地板砖上的概率是()A. B. C. D. 解析 每个小方块的面积相等,而黑色地板砖占

2、总体的,故蚂蚁停留在黑色地板砖上的概率是答案B3. 如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估量出阴影部分的面积约为()A. B. C. D.解析由几何概型的概率公式,得,所以阴影部分面积约为,故选C.答案C4在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为 ()A. B. C. D.解析设出AC的长度,先利用矩形面积小于32 cm2求出AC长度的范围,再利用几何概型的概率公式求解设ACx cm,CB(12x)cm,0x12,所以矩形面积小于32 cm2即为

3、x(12x)320x4或8x12,故所求概率为.答案C5. 分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为 ()A. B.C. D.解析设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为2,则阴影区域的面积为24,所以所求概率为P.答案B6若利用计算机在区间(0,1)上产生两个不等的随机数a和b,则方程x2有不等实数根的概率为 ()A. B. C. D.解析方程x2,即x22x2b0,原方程有不等实数根,则需满足(2)242b0,即ab.在如图所示的平面直角坐标系内,(a,b)的全部可能

4、结果是边长为1的正方形(不包括边界),而大事A“方程x2有不等实数根”的可能结果为图中阴影部分(不包括边界)由几何概型公式可得P(A).故选B.答案B二、填空题7在区间上随机取一个数x,cos x的值介于0至之间的概率为_解析依据题目条件,结合几何概型的概率公式可得所求的概率为P.答案8小波通过做玩耍的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书则小波周末不在家看书的概率为_解析设A小波周末去看电影,B小波周末去打篮球,C小波周末在家看书,D小波周末不在家看书,如图所示,则P(D)1.答案9有一个底面

5、圆的半径为1,高为3的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为_解析确定点P到点O1,O2的距离小于等于1的点的集合为,以点O1,O2为球心,1为半径的两个半球,求得体积为V213,圆柱的体积为VSh3,所以点P到点O1,O2的距离都大于1的概率为V1.答案10已知正三棱锥SABC的底边长为4,高为3,在三棱锥内任取一点P,使得VPABCVSABC的概率是_解析三棱锥PABC与三棱锥SABC的底面相同,VPABCVSABC就是三棱锥PABC的高小于三棱锥SABC的高的一半,过高的中点作一平行底面的截面,这个截面下

6、任取一点都符合题意,设底面ABC的面积为S,三棱锥SABC的高为h,则所求概率为:P.答案三、解答题11已知|x|2,|y|2,点P的坐标为(x,y),求当x,yR时,P满足(x2)2(y2)24的概率思路分析由题意画出图象可求面积之比解如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x2)2(y2)24的点的区域为以(2,2)为圆心,2为半径的圆面(含边界)所求的概率P1.12已知关于x的一次函数ymxn.(1)设集合P2,1,1,2,3和Q2,3,分别从集合P和Q中随机取一个数作为m和n,求函数ymxn是增函数的概率;(2)实数m,n满足条件求函数ymxn的图象经过一、二、三象

7、限的概率解(1)抽取的全部结果的基本大事有:(2,2),(2,3),(1,2),(1,3),(1,2),(1,3),(2,2),(2,3),(3,2),(3,3),共10个基本大事设使函数为增函数的大事为A,则A包含的基本大事有:(1,2),(1,3),(2,2),(2,3),(3,2),(3,3),共6个基本大事,所以,P(A).(2)m,n满足条件的区域如图所示,要使函数的图象过一、二、三象限,则m0,n0,故使函数图象过一、二、三象限的(m,n)的区域为第一象限的阴影部分,所求大事的概率为P.13已知集合A2,0,2,B1,1,设M(x,y)|xA,yB,在集合M内随机取出一个元素(x,

8、y)(1)求以(x,y)为坐标的点落在圆x2y21上的概率;(2)求以(x,y)为坐标的点位于区域D:内(含边界)的概率解(1)记“以(x,y)为坐标的点落在圆x2y21上”为大事A,则基本大事总数为6.因落在圆x2y21上的点有(0,1),(0,1)2个,即A包含的基本大事数为2,所以P(A).(2)记“以(x,y)为坐标的点位于区域内”为大事B,则基本大事总数为6,由图知位于区域D内(含边界)的点有:(2,1),(2,1),(0,1),(0,1),共4个,即B包含的基本大事数为4,故P(B).14甲、乙两艘船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率解甲比乙早到4小时内乙需等待,甲比乙晚到2小时内甲需等待以y和x分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时需等待一段时间的充要条件为2xy4,在如图所示的平面直角坐标系内,(x,y)的全部可能结果是边长为24的正方形,而大事A“有一艘船停靠泊位时必需等待一段时间”的可能结果由阴影部分表示由几何概型公式,得P(A).故有一艘船停靠泊位时必需等待一段时间的概率是.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服