1、 补偿练6 平面对量与解三角形 (建议用时:40分钟) 一、选择题 1.在平面直角坐标系xOy中,点A(1,3),B(-2,k),若向量⊥,则实数k=( ). A.4 B.3 C.2 D.1 解析 由于A(1,3),B(-2,k),所以=(-3,k-3),由于⊥,所以-3+3k-9=0,解得k=4. 答案 A 2.已知向量a=(1,2),b=(2,0),c=(1,-2),若向量λa+b与c共线,则实数λ的值为( ). A.-2 B.- C.-1 D.- 解析 由题知λa+b=(λ+2,2λ),又λa+b与c共线, ∴-2(λ+2)-2λ=0,∴λ=-1.
2、 答案 C 3.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则+=( ). A. B. C. D. 解析 以F为坐标原点,FP,FG所在直线为x,y轴建系,假设一个方格长为单位长,则F(0,0),O(3,2),P(5,0),Q(4,6),则=(2,-2),=(1,4),所以+=(3,2),而恰好=(3,2),故+=. 答案 D 4.在平面四边形ABCD中,满足+=0,(-)·=0,则四边形ABCD是( ). A.矩形 B.正方形 C.菱形 D.梯形 解析 由于+=0,所以=-=,所以四边形ABCD是平行四边形,又(-)·=·=0,所以四边形的对角线相互
3、垂直,所以四边形ABCD是菱形. 答案 C 5.在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为( ). A. B.3 C. D.7 解析 S=×AB·ACsin 60°=×2×AC=,所以AC=1,所以BC2=AB2+AC2-2AB·ACcos 60°=3,所以BC=. 答案 A 6.在△ABC中,若a=2b,面积记作S,则下列结论中肯定成立的是( ). A.B>30° B.A=2B C.c<b D.S≤b2 解析 由三角形的面积公式知S=absin C=2b·bsin C=b2sin C,由于0<sin C≤1,所以b2sin
4、 C≤b2,即S≤b2. 答案 D 7.已知直角坐标系内的两个向量a=(1,3),b=(m,2m-3),使平面内的任意一个向量c都可以唯一地表示成c=λa+μb,则m的取值范围是( ). A.(-∞,0)∪(0,+∞) B.(-∞,-3)∪(-3,+∞) C.(-∞,3)∪(3,+∞) D.[-3,3) 解析 由题意可知向量a与b为基底,所以不共线,≠,得m≠-3. 答案 B 8.在边长为1的正三角形ABC中,=,E是CA的中点,则·等于 ( ). A.- B.- C.- D.- 解析 建立如图所示的直角坐标系,则A, B,C, 依题意设D(x1,0),
5、 E(x2,y2), ∵=, ∴=(-1,0), ∴x1=. ∵E是CA的中点,∴x2=-,y2=. ∴·=· =×+×=-. 答案 A 9.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acos B+bcos A=csin C,S=(b2+c2-a2),则角B等于( ). A.90° B.60° C.45° D.30° 解析 由正弦定理得sin Acos B+sin Bcos A=sin Csin C,即sin(B+A)=sin Csin C,由于sin(B+A)=sin C,所以sin C=1,
6、C=90°,依据三角形面积公式和余弦定理得,S=bcsin A,b2+c2-a2=2bccos A,代入已知得bcsin A=·2bccos A,所以tan A=1,A=45°,因此B=45°. 答案 C 10.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于( ). A. B. C.- D.- 解析 由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,即2×absin C=a2+b2+2ab-c2,所以absin C-2ab=a2+b2-c2,又cos C===-1,所以cos
7、 C+1=,即2cos2=sin cos ,所以tan =2,即tan C===-. 答案 C 11.已知△ABC的外接圆的圆心为O,半径为1,若3+ 4+5=0,则△AOC的面积为( ). A. B. C. D. 解析 依题意得,(3+5)2=(-4)2,92+252+30·=162,即34+30cos∠AOC=16,cos∠AOC=-,sin∠AOC==,△AOC的面积为||||sin ∠AOC=. 答案 A 12.已知向量a是与单位向量b夹角为60°的任意向量,则对任意的正实数t,|ta-b|的最小值是( ). A.0 B. C. D.1 解析
8、∵a与b的夹角为60°,且b为单位向量, ∴a·b=,|ta-b|== =≥. 答案 C 二、填空题 13.若向量m=(1,2),n=(x,1)满足m⊥n,则|n|=__________. 解析 ∵m⊥n,∴m·n=0,即x+2=0,∴x=-2, ∴|n|==. 答案 14.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有=,则角C的大小为________. 解析 依题意得acos A=bcos B,sin Acos A=sin Bcos B,sin 2A=sin 2B,则2A=2B或2A=π-2B,即A=B或A
9、+B=,又△ABC是不等边三角形,因此A+B=,C=. 答案 15.在边长为1的正方形ABCD中,E,F分别为BC,DC的中点,则·=________. 解析 由于=+,=+,·=0,所以·=(+)·(+)=2+2=1. 答案 1 16.给出以下结论: ①在三角形ABC中,若a=5,b=8,C=60°,则·=20; ②已知正方形ABCD的边长为1,则|++|=2; ③已知=a+5b,=-2a+8b,=3(a-b),则A,B,D三点共线. 其中正确结论的序号为__________. 解析 对于①,B·C=abcos(π-C)=-abcos C=-20;对于②,|++|=|2|=2||=2;对于③,由于=a+5b,=+=a+5b,所以=,则A,B,D三点共线.综上可得,②③正确. 答案 ②③
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818