1、 勾股定理知识总结 一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a
2、2+b2,则ABC是以C为直角的直角三角形(若c2a2+b2,则ABC是以C为钝角的钝角三角形;若c2b=c),那么a2b2c2=211。其中正确的是() A、B、C、D、13.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.14.如图一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距 () A、25海里B、30海里C、35海里D、40海里15. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正
3、方形的面积为() A、40B、80C、40或360D、80或36016某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要()北南A东第14题图 A、450a元B、225a 元C、150a元 D、300a元15020m30m第16题图三解答题:17如图1,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )(A)CD、EF、GH(B)AB、EF、GH(C)AB、CD、GH(D)AB、CD、EF19有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺
4、,斜放就恰好等于门的对角线长,已知门宽4尺, 求竹竿高与门高。AABABOA第20题图20一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米? 21.如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。 图53、如图所示,ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DEDF,若BE=12,CF=5求线段EF的长。 八年级
5、上北师大版第一章勾股定理测试题一、选择题(每小题3分,共30分) 1.下列各组中,不能构成直角三角形的是 ( ).(A)9,12,15 (B)15,32,39 (C)16,30,32 (D)9,40,41 2. 如图1,直角三角形ABC的周长为24,且AB:BC=5:3,则AC= ( ).(A)6 (B)8 (C)10 (D)12 3. 已知:如图2,以RtABC的三边为斜边分别向外作等腰直角三角形若斜边AB3,则图中阴影部分的面积为 ( ).(A)9 (B)3 (C) (D) 4. 如图3,在ABC中,ADBC与D,AB=17,BD=15,DC=6,则AC的长为( ).(A)11 (B)10
6、 (C)9 (D)8 5. 若三角形三边长为a、b、c,且满足等式,则此三角形是( ).(A)锐角三角形 (B)钝角三角形 (C)等腰直角三角形 (D)直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A)6 (B)8.5 (C) (D) 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A)3 (B)4 (C)5 (D)6 8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ).(A)6秒 (B)5秒 (C)4秒 (D)3秒 9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角
7、三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么 的值为 ( ).(A)49 (B)25 (C)13 (D)110. 如图5所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为 ( ). (A)20 (B)24 (C)28 (D)32 二、填空题(每小题3分,共30分) 11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A的面积为 . (2)斜边x= . 13. 如图7,已知在中,分别以,为直径
8、作半圆,面积分别记为,则+的值等于 14. 四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有 个直角三角形. 15. 如图8,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为 三、简答题(50分) 16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,B=90,求四边形ABCD的面积. 17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法.(2)你能在图上画出面积依次为5个单位、1
9、0个单位、13个单位的正方形吗?18.(8分)如图11,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每
10、个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.(2)试比较立体图中ABC与平面展开图中的大小关系.21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?答案提示:一、选择题1.C 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.A 10.A二、填空题11.略 12.(1)36,(2)13 13. 2 14. 1 15. 三、简答题16. 在RtABC中,AC=. 又因为,即. 所以DAC=90. 所以=6+30=36.17.略18. 约22米.根据半圆柱的展开图可计算得:AE=米.19. 如图12,在RtABC中,根据勾股 定理可知, BC=(米). 300020=150米/秒=540千米/小时.所以飞机每小时飞行540千米.20. (1);(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x米,得方程, ,解得x=15,所以梯子向后滑动了8米.7
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100