ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:203KB ,
资源ID:3679618      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3679618.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学论文集A版高一年级函数模型的应用实例内容的教学设计.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学论文集A版高一年级函数模型的应用实例内容的教学设计.doc

1、A版高一年级函数模型的应用实例内容的教学设计宁波市武岭中学 杨建军 315502 yjianjunls一个实际问题的解决方案应该是有多种的,因此本课采用“预设和生成”的教育理念,兼容多种方案,使学生真正能够在利用函数模型来解决实际问题的同时,如何来处理与采纳某种方案。本教学设计注重了学生的探究能力的培养,突出了学生的主体地位,体现了新课程的其它新的理念。本课是在学习了初中一次、二次及反比例函数与高中基本函数模型的基础上,通过建立和运用函数基本模型,体验数学建模、拟合等数学基本思想,发展学生的创新意识和数学应用意识。本授课班级双基能力较强,但是由于学生刚刚接触对数型函数等新知识点,有可能对于建立

2、这些函数模型比较困难。1 教学三维目标、重点、难点、准备。11教学三维目标 (1)知识与技能:使学生学会建立恰当的函数模型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测。 (2)过程与方法:通过例题与作业中的具体实例,让学生了解函数模型的广泛应用。 (3)情感态度与价值观:利用函数模型解决问题前,进行拟合检验,培养学生的负责态度。12教学重点:由面临的实际问题建立函数模型,检验函数模型,并利用得到的函数模型解决问题。13教学难点:如何根据面临的实际问题建立函数模型。14教学准备:PPT制作与几何画板制作。2 教学过程。(学生):(对5种基本初等函数进行回顾)(教师):(打开PPT)函

3、数建模的基本思想与方法:把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述称为数学建模。数学建模的形式是多样的。解应用题的关键是建立数学建模,把实际问题通过分析、联想、抽象转化为数学问题。函数知识内容丰富、应用广泛,不仅数学问题,而且社会生活、生产和自然科学领域中有许多问题都需要用函数知识来解决,如成本最底、利润最高、用料最省、路程最短等常可归纳为函数的最值问题。运用建模思想解函数应用题的一般步骤是:读(阅读材料,审题,找基本量或关系);建(提取信息,抽象成数学语言,根据相关定义及数学知识建立模型);求(根据数学思想和方法,求解函数模型,得出结论)

4、;还(把数学结论还原到实际问题中,通过分析、判断、检验得到实际正确解答,写出答案)。一.由变量之间的依存关系建立函数关系;二.由所掌握的数据资料,即根据确定性,随机性数据建立函数关系,这种往往要画散点图。例:某地新建一个服装厂,从今年月份开始投产,并且前4个月的产量分别为万件,万件,万件,万件。由于产品质量好服装款式新颖,因此前几个月的产品销售情况良好,为使推销员在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,假如你是厂长,将会采用什么办法?(学生):画散点图。(学生们接下来画散点图,过1分钟。)板书:画散点图图1(教师):(打开几何画板),如图1所示各点:把4个点分别记为A

5、、B、C、D。观察这4个点有何联系?(学生):这4个点基本上在同一条直线上。(学生):应该是一次函数,是。板书:由图可知:用一次函数拟合,把B、C坐标值代入,得,故。与实际的误差为,与实际的误差为(教师):(打开几何画板),如图1蓝线所示:(教师):我们仔细地观察图形,发现A、D都在直线的下方,我们可以(学生):二次函数可以吗?(有点不肯定)板书:用二次函数拟合,把A、B、C坐标值代入,得,故与实际误差为(教师):(打开几何画板),如图1黑线所示。(教师):观察这些数据,我们可以发现随着自变量的增加函数值也在增加,但是增加的速度是越来越慢的,那我们可以(学生甲):对数函数。(学生乙):幂函数。

6、(学生丙):指数函数。(教师):要求掌握的是次的幂函数,从经过的点来看不是次的幂函数,但是我们可以用次的幂型函数来拟合。板书:用幂型函数拟合,把A、B坐标值代入,得,故与实际误差为,与实际误差为,(教师):(打开几何画板),如图1红线所示:(教师):因为图象不经过这个点,可以肯定不是指数函数。(学生):课本上有个例子是用来拟合的,是不是这个也可以的?(学生基本上已经开始打开思路)板书:用指数型函数拟合,把A、B、C坐标值代入,得 ,(2)-(1)、(3)-(1)得,故。与实际的误差为(教师):(打开几何画板),如图1绿线所示:(学生):(议论,基本能想到在整个函数式子后面加一个常数,很少想到图

7、象的左右平移,即在后边加一个常数)(教师):同学们都能想到在整个式子后加一个常数,我们知道这是图象的上下平移;难道同学们就不能想到图象的左右平移,那这样的式子应该是(学生):后边加一个常数。板书:用对数型函数拟合,把A、B、C坐标值代入,得 ,(2)-(1)、(3)-(1)得, ,把,故,与实际的误差为(教师):刚才我们算了一个比较小的误差,现在这个误差是更小的。(教师):(打开几何画板),如图1墨绿线所示:(教师):从图象中我们可以看到D点更加接近于曲线,所以说假如你们作为厂长的话,你们选择的函数模型应该是,以这个函数模型作为依据来估计以后几个月的需求量。由实际的趋势我们也可以知道当一种新的

8、产品投入市场后的一段时间内,假如产品好的话,肯定会比较畅销。过了这段时间由于市场饱和及工厂设备或另一种新的产品出现等情况,必定要导致原来产品的平稳期。所以说我们也应该选择这一函数模型。在刚才的函数模拟中有同学提出是否可以在式子前乘上一个系数,这是完全可以的。由于时间的关系我们就不继续展开了,同学们可以在课后去研究一下是否可行。实际上对于这样一个具体的问题,我们假如继续去模拟新的函数模型有可能会更加吻合。这里只能说没有最好的,只有更好的,所以说答案也是不一定唯一的。马尔萨斯人口增长模型也是在他经过无数次的拟合后得到的一个模型。下面我们来看一下我们刚才的基本过程:(打开PPT)(如图2)(说明:各

9、方块在PPT中是逐一出现的)图2 实行了新的课程之后,我们要学习的一门重要学科就是研究性学习。刚才的过程给了我们一个比较好的实例,如何来解决实际的问题,对于同学们搜集到的数据如何进行处理。(打开PPT)小结:(1)(2)(3)(说明:小结部分可由学生自己总结得到) 作业:某厂生产一种机器的固定投入为万元,但每生产 台,需要另投入万元.市场对此产品的需求量为台,销售收入函数为(万元),其中是产品售出的数量(单位:百台). (1)把利润表示为年产量的函数; (2)年产量是多少时,工厂所得利润最大? (3)年产量是多少时,工厂才不会亏本?3 板书设计函数建模: 小结:步骤: 解: 作业: 4 教学反

10、思。作为新课改下的一节研究性的课堂教学,主要有以下几个理念的体现:(1) “预设和生成”的教育理念一个问题摆上讲台,首先要有自己的一份思想,同时人与人的思想都不相同,总是有许多学生能够提出新的问题,这时我们要学会去引导与解决。(2) 导积极主动、勇于探索的学习方式新课程里倡导的是学生的主动探索、动手实践、合作交流、阅读自学等学习方式。这节课里的5种函数模型基本上都是学生在主动探索中来发现,这样有助于发展他们的创新意识。(3) 提高学生的数学思维能力同学们在运用所学的数学知识解决问题时,不断地运用了直观感知、数据处理、观察发现、归纳类比、反思与建构等思维过程。(4) 发展学生的数学应用意识越来越

11、多的学生认为高中数学的学习已经是越来越没用了。实际上数学越来越多地在生活、经济、政治、文化等领域中发挥了不可替代的作用。(5) 与时俱进地体现“双基”我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统。新课改要求着我们继续发扬这种传统,但也要适当的改变。例如一些计算可以由计数器来完成,不加入一些人为性的计算技巧等。(6) 注重信息技术与数学课程的整合现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。本节课中的散点图以及各函数图象如果不是在几何画板中来完成就会影响了时间又影响了各函数拟合效果。参考文献:1. 课标教案 数学A版 必修1 人民教育出版社、延边教育出版社 2006.72. 数学教材标准学案 数学 必修1 中国广播电视出版社 2006.63. 数学教材学习讲义 内蒙古人民出版社 2005.84. 数学1 必修 人民教育出版社 2004.55. 数学课程标准 人民教育出版社 2003.4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服