ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:834.40KB ,
资源ID:3631520      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3631520.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一类渔业经济模型的复杂动力学行为.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一类渔业经济模型的复杂动力学行为.pdf

1、Advances in Applied Mathematics 应用数学进展应用数学进展,2024,13(4),1565-1574 Published Online April 2024 in Hans.https:/www.hanspub.org/journal/aam https:/doi.org/10.12677/aam.2024.134147 文章引用文章引用:慕云田,周欢.一类渔业经济模型的复杂动力学行为J.应用数学进展,2024,13(4):1565-1574.DOI:10.12677/aam.2024.134147 一类渔业经济模型的复杂动力学行为一类渔业经济模型的复杂动力学行为

2、 慕云田慕云田*,周,周 欢欢 兰州交通大学数理学院,甘肃 兰州 收稿日期:2024年3月23日;录用日期:2024年4月21日;发布日期:2024年4月28日 摘摘 要要 考虑到多个主体仅最大化个人利益的情形,本文建立了一个渔业经济模型。结合非线性动力学知识,利考虑到多个主体仅最大化个人利益的情形,本文建立了一个渔业经济模型。结合非线性动力学知识,利用单参数分岔图,吸引子,系统的间歇行为,以及吸引盆拓扑结构的变化分析了系统的动力学行为。较用单参数分岔图,吸引子,系统的间歇行为,以及吸引盆拓扑结构的变化分析了系统的动力学行为。较大的市场需求,可控的价格弹性和生物的内在增长率,较小的成本参数将会

3、维持渔业资源的可持续发展,大的市场需求,可控的价格弹性和生物的内在增长率,较小的成本参数将会维持渔业资源的可持续发展,维护各主体的收益。维护各主体的收益。关键词关键词 渔业渔业经济,分岔,稳定域,经济,分岔,稳定域,吸引子共存吸引子共存 Complex Dynamic Behavior of a Kind of Fishery Economic Model Yuntian Mu*,Huan Zhou School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou Gansu Received:Mar.23rd,2024

4、;accepted:Apr.21st,2024;published:Apr.28th,2024 Abstract Considering the situation that many agents only maximize their personal interests,this paper es-tablishes a fishery economic model.Combined with the knowledge of nonlinear dynamics,the dy-namic behavior of the system is analyzed by using one-p

5、arameter bifurcation diagram,attractors,intermittent behavior of the system,and the change of the topological structure of the basins.Larger market demand,controllable price elasticity and internal growth rate of organisms,and smaller cost parameters will maintain the sustainable development of fish

6、ery resources and maintain the return of each agent.*通讯作者。慕云田,周欢 DOI:10.12677/aam.2024.134147 1566 应用数学进展 Keywords Fishery Economy,Bifurcation,Stable Region,Attractor Coexistence Copyright 2024 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution Internati

7、onal License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.引言引言 目前许多渔业资源正面临着衰退和不可持续的局面。对渔业经济学的研究,通常用动态模型来描述资源数量的变化1-6。Levhari 和 Mirman 1建立了关于渔获量的微分博弈的离散模型,获得了Cournot-Nash 均衡的表达式。Bischi 和 Lamantia 3研究了一个古诺寡头垄断博弈的多主体渔业经济模型。顾恩国和陈宝香4研究了具有不同策略的多主体渔业经济模型。Raymond 等5研究了渔业模型的动力学问题,不仅证明了共存平衡点的稳定性而且通过

8、数值模拟证明了生物经济平衡。Zhou 等人6基于梯度调整机制分析了在受其他参数影响下多个主体如何获取最大利润。利用渔业经济模型预测和防止渔业资源的衰退和保持可持续发展是十分必要的,因此大多数学者引入了非线性系统的动态行为分析7 8 9 10 11。Din 等7研究了一类离散奇异生物经济系统的稳定性与两种类型的分岔(即 flip 分叉和 Neimark-Sacker 分叉)。此外,吸引盆中还有其他复杂的动力学现象,如洞、吸引子共存、全局分叉等,一直是许多学者感兴趣的问题。比如 Abraham 和 Laura 等人8使用临界曲线方法直观地引入二维不可逆离散动力系统中的混沌和分叉。李慧9研究了鞍结分

9、岔和两种间歇现象,并且利用不可逆映射理论和临界曲线等方法研究了模型的全局动力学。Liu 等11利用临界曲线分析了吸引盆拓扑结构的变化以及吸引盆“缺口”的原因。此外,最大李亚普诺夫指数图,相图等,也是分析复杂动态行为的有力工具(见参考文献12 13 14 15)。已有的文献大多采用线性需求函数,而线性水平一般不能很好地代表实际中较为复杂多变的情形,本文采用非线性需求函数使得模型更接近实际市场。并且将捕捞总量看成系统变量进行研究,结合非线性动力学知识,利用吸引子,系统的间歇行为,以及吸引盆拓扑结构的变化分析了系统的动力学行为。2.模型建立模型建立 假设有 n 个参与者和 m 个市场,其中,1n m

10、。n 个参与者收获鱼,每个参与者在 m 个市场上出售鱼。通过参考文献10的非线性需求函数,假定逆需求函数为:()()1212iiiniiiiiniAxxxpBxxx+=+,1,2,im=(1)其中:iA表示市场 i 的价格等于 0 时的最大瞬时需求;iB表示需求相对于价格的敏感度的正参数;kix表示 t 时间内,参与者()1,2,k kn=收获并在市场 i 上出售的鱼的数量。令()X t是在时间t时鱼群的总数量,()kht是在时间t时参与者()1,2,k kn=收获(和出售)的鱼量。其中:()()()()12kkkkmhtxtxtxt=+。假设参与者()1,2,k kn=的成本函数16为:2k

11、kkkhCcX=+(2)Open AccessOpen Access慕云田,周欢 DOI:10.12677/aam.2024.134147 1567 应用数学进展 其中:kc表示固定成本,k表示技术参数且0k。假设()()()()12iiinis txtxtxt=+为时间周期 t 内市场()1,2,i im=供应(和销售)的鱼量;且()()()()()()()1212:nmH th ththtststst=+=+(3)假设渔民拥有完善的种群信息,在这种情况下,捕捞的鱼群的动态是由一维系统控制的:()()()()()11X tX tX tH t+=+(4)其中:表示内在增长率,K=表示环境承载力

12、。在完全不合作情形下,每个参与者()1,2,k kn=只是最大化他们自己的利益来决定他们的收获政策。则参与者()1,2,k kn=在时期 t 的利润函数为:()()()()121122miiinikkikiiiiikknAxxxtxcBxxxhtX=+=+(5)假设所有个体采取最佳策略反映,他们决定其捕捞策略使他们的利润最大化。每一时段 t 所有个体决定1t+时段的捕捞量,必须形成其竞争对手的捕捞量的预期。则第()1,2,k kn=个个体在1t+时段的捕捞量为:()()()()1argmax,1ekkkkhththt+=+(6)其中:()1ekht+表示第()1,2,k kn=个个体关于其他个

13、体的决策预期。假设()()1ekkhtht+=,则个体()1,2,k kn=的优化问题的解可以由以下方程(7)得到()0kkitx=(7)则()()()()2i ikiiikki iAs X txAsX tht B s=(8)对所有的 i 相加得到()()()()()()11112mimikkimmiikkiiiAH t X thxAH tX tht H tB=(9)令1miiAa=,1miiBb=,则()()()()2kkkaHX thaH X tht Hb=(10)对所有的()1,2,k kn=相加得到()()()122aX tnnX tHbcHbc=(11)其中:1nkkc=慕云田,周欢

14、 DOI:10.12677/aam.2024.134147 1568 应用数学进展 结合方程(4)建立如下渔业资源储量与捕捞量之间相互作用的模型为:()()()()()()()()()()11:1122X tX tX tH tTaX tnnX tH tbcH tbc+=+=+=(12)为了使得模型有意义,对于0t 限制在区域()2,X HR+研究。根据实际意义,所有时段总捕捞量小于总资源储量,即()(),|0X HX HHX。3.不动点的局部稳定性不动点的局部稳定性 系统 T 的平衡点满足()()()()()()()122aX tnnX tX tX tbcH tbc=(13)正不动点()*,E

15、 XH的坐标满足()()()*122nanXtbcHtbc=(14)化简(14)可以得到:()()()2*3*22*24210bcXbcnXbcnXa n+=(15)记22Ubc=,()4Vbcn=+,22Wbcn=+,()1Qa n=,*3VXYU=。则(15)式简化为*3*0YpYq+=,其中 2232332792,327UWVU QUVWVpqUU+=记2323qp=+,有以下的命题 1。命题命题 1:(1)当0 时,系统(13)有唯一的正平衡点()*,XH。其中*23bcnXYbc+=+*3322qqY=+()()*12naHbcXn=+(2)当0=时,系统(13)有 2 个正平衡点(

16、)*11,XH和()*22,XH 其中:*1123bcnXYbc+=+,*2223bcnXYbc+=+*3122qY=,*322qY=慕云田,周欢 DOI:10.12677/aam.2024.134147 1569 应用数学进展 ()()*1*112naHbcXn=+,()()*2*212naHbcXn=+(3)当0 时,系统(13)有 3 个正平衡点()*11,XH,()*22,XH和()*33,XH 其中*1123bcnXYbc+=+,*2223bcnXYbc+=+,*3323bcnXYbc+=+*33122qqY=+,*233222qqY=+,*233322qqY=+(这里132i+=)

17、()()*1*112naHbcXn=+,()()*2*212naHbcXn=+,()()*3*312naHbcXn=+不动点()*,E XH的局部稳定性依赖于系统(12)的 Jacobi 矩阵的特征值:()()()()*2*12111222Xa naXnnJ EbcHbcbc H+=(16)如果()J E的特征值的模小于 1,则()*,E XH稳定。但是满足命题 3.1 条件的正平衡点()*,E XH存在时,很难解析地计算出 Jacobi 矩阵的特征值,所以严格分析稳定性是非常复杂的。因此有以下命题 3.2:命题命题 2:如果满足条件:*2*2*2*222132aHaXH naH na Xan

18、XaXa nXa nXbcH+。(ii)()()()11trdet0PJ EJ E=+。(iii)()1 det0J E。则不动点()*,E XH是局部稳定的,即(i)()*21202aXnXbcH+。慕云田,周欢 DOI:10.12677/aam.2024.134147 1570 应用数学进展 (ii)()*212202aXnXbcH+。(iii)10+。其中*2*2*2*2222aHaXH naH na XanXaXa nXa nXbcH+=则有(i)()*2122aXnXbcH+。(iii)1。将(iii)代入(i)和(ii),可以得到:()()*2*211212322aXnaXnXbc

19、HbcH=所以有()()*2*2113222aXnaXnXbcHbcH 即当*2*2*2*222132aHaXH naH na XanXaXa nXa nXbcH+不动点()*,E XH是局部渐近稳定的。图 1 显示了 b-c 平面上的纳什均衡点的稳定区域。参数为0.0305=,0.662=,0.3a=。稳定区域的大小在很大程度上受瞬时市场需求和内在增长率的影响。如图 1(b)和图 1(c)所示,稳定区域的范围随着的增大而变小,而随着 a 的增大而增大。(a)0.3,0.0305a=(b)0.8,0.0305a=(c)0.8,0.8a=Figure 1.Stability regions of

20、 the Nash equilibrium point on the b-c plane 图图 1.b-c 平面上的纳什均衡点的稳定域 慕云田,周欢 DOI:10.12677/aam.2024.134147 1571 应用数学进展 4.数值模拟数值模拟 上一节使用 Jury 准则分析了定点的稳定性;本节将利用数值模拟研究参数对系统稳定性的影响。我们研究了两个代理在同一市场上运营的情况。假设固定成本为0kc=,并且两个代理都采用类似的方法捕获鱼类生物并在同一市场上销售。系统关于参数 b 的一维分岔图如图 2(a)所示,可以看出随着参数 b 的不断增加,系统先发生Neimark-Sacker 分岔

21、,然后发生逆倍周期分岔之后进入混沌。参数选取与图 2(a)相同,但是将初值选取为(1.1,0.93),得到系统 T 关于参数 b 的单参数分岔图,如图 2(b)。对比图 2(a)和图 2(b),发现在跳跃处两个分岔图具有不同的状态,可以看出系统可能具有多稳态结构。当初始的渔业生物资源存储量和捕捞量较小时,系统在(1.79,1.81)之间的复杂动力学行为是比较简单的周期行为,但是当初始值改变,初始的渔业生物量和捕捞量变大时,跳跃处的周期行为将变得复杂。利用吸引盆分析单参数分岔图发生跳跃的原因是因为吸引子在这期间共存。值得注意的是,系统在1.7913b=时,单参数分岔有明显的跳跃,这些地方都可能有

22、共存吸引子。这说明价格敏感度系数应该保持在一定的范围内才会使渔业经济达到稳定,否则会让渔业经济失去平衡,陷入不可逆的混沌状态。为了研究单参数分岔图中1.7913b=时的跳跃现象,选取与图 2(a)相同的参数集,得到关于 b 的单参数分岔图跳跃处的吸引盆和吸引子,如图 2(c)图 2(f)。当参数1.791b=时,系统 T 有一个 5-环,在图中用黑色表示,用浅蓝色标记为它的吸引盆,如图 2(c)。调整价格敏感参数,当1.7913b=时,系统中有两种吸引子共存,一种是用黑色标记 5-环,另一种是用红色标记的 30-环,其吸引盆用黄色标记,如图 2(d)。继续增大价格敏感参数 b,红色的 30-环

23、会经过 flip 分岔变成 60-环,之后进入混沌,如图 2(e),当1.806b=时变为周期为 15 的混沌吸引子,与此同时,5-环也从最初的不动点变为 5-周期的不变环。随着 慕云田,周欢 DOI:10.12677/aam.2024.134147 1572 应用数学进展 Figure 2.(a)When the initial conditions are set to 0.62X=and 0.61H=,the one-dimensional bifurcation diagram with respect to b;(b)When the initial conditions are s

24、et to 1.10X=and 0.93H=,the one-dimensional bifurcation diagram with respect to b;(c)1.79100b=,5-cycle and its basin;(d)1.79130b=,5-cycle coexists with 30-cycle and their basins;(e)1.80600b=,5-cycle coexists with period-15 chaotic attractor;(f)1.80700b=,only period-5 invariant cycle remains in the sy

25、stem 图图 2.(a)初始条件选择为(0.62,0.61)时,关于 b 的单参数分岔图;(b)初始条件选择为(1.1,0.93)时,关于 b 的单参数分岔图;(c)1.79100b=时,5-环及其对应的吸引盆;(d)1.79130b=,5-环与 30-环及其对应的吸引盆;(e)1.80600b=,5-周期不变环与 15-周期混沌吸引子及其对应的吸引盆;(f)1.80700b=,5-周期不变环和它的吸引盆 价格敏感参数 b 不断增加红色的混沌吸引子与黑色的不变环也变得越来越大,各自对应的吸引盆范围也变大了。直到 b 增加到 1.807 时,由于 15-周期的混沌吸引子与其吸引盆边界发生接触

26、15-环及其黄色的吸引域都消失,最后系统只有 5-周期的不变环,如图 2(f)所示。价格敏感参数对系统稳定性有一定的影响,当价格敏感参数控制在适当的范围,才会让渔业经济系统保持在有序的状态,渔类生物资源存储量和捕捞量也会是可持续发展的。如图 3(a)所示,当成本参数 c 在不断变大时,系统会从最初的混沌状态经由 flip 分岔,再次进入混沌状态。当参数()1.425,1.6c和()1.935,2.175c时保持周期稳定,成本参数 c 不断增大,会让渔业经济系统在2.2c=时,不可逆的进入一个无序的状态,并且会很难预测出此渔业经济系统未来的走向。同时,系统在1.4257c 会突然从混沌状态分别进

27、入 10-周期状态。接下来,将分析参数 c 在 1.4257 附近变化时系统的动力学行为。如图 3(b)所示,1.4255c=时,系统只存在一个混沌吸引子。图 3(c)是图 3(b)对应的时间序列图,这是 PM-III 型间歇混沌发生前的时间序列,表现为周期运动与混沌运动相互交替。1.4257c=是 PM-III 型间歇混沌发生的临界值。当1.426c=,如图 3(d)是 PM-III 型间歇混沌发生后情形,系统经历短暂混沌运 慕云田,周欢 DOI:10.12677/aam.2024.134147 1573 应用数学进展 Figure 3.(a)The one-dimensional bifu

28、rcation diagram with respect to bifurcation parameter c;(b)1.42570c=,the attrac-tor of the system is a chaotic attractor;(c)Time series diagram corresponding to(b);(d)1.42600c=,the attractor of the system is a 10-cycle 图图 3.(a)关于分岔参数 c 的单参数分岔图;(b)1.42570c=,系统只有一片混沌吸引子存在;(c)图(b)所对应的时间序列图;(d)1.42600c=

29、,系统只有一个吸引的 10-环 动之后进入周期-10 状态。间歇混沌现象意味着系统具有自我调节能力,系统在稳定与混沌之间不断循环,但随着时间的推移,系统失去了长期稳定性,这意味着这种自我调节能力无法使系统保持长期稳定发展。5.结语结语 基于非线性需求函数,本文建立了多主体渔业经济模型,其中多主体之间以自身利益最大化作为自己的收获决策。利用系统的雅可比矩阵和 Jury 判据讨论了不动点的存在性和局部稳定性。分析了系统的多稳态性,发现较大的市场需求,可控的价格弹性和生物的内在增长率,较小的成本参数将会维持渔业资源的可持续发展,各个主体的可观收益。并且发现由于吸引子的共存会让单参数分岔图有跳跃现象。

30、此外,间歇混沌现象意味着系统具有自调节能力,系统不断在稳定以及混乱之间循环往复。通过分析吸引盆的形状和大小变化,将有效防止资源衰竭,维护主体利益。参考文献参考文献 1 Levhari,D.and Mirman,L.J.(1980)The Great Fish War:An Example Using A Dynamic Cournot-Nash Solution.The Bell Journal of Economics,11,322.https:/doi.org/10.2307/3003416 2 顾恩国.离散动力系统的分叉与混沌:叠映射的全局分析方法M.北京:科学出版社,2013.3 Bi

31、schi,G.I.and Lamantia,F.(2007)Harvesting Dynamics in Protected and Unprotected Areas.Journal of Economic Behavior and Organization,62,348-370.https:/doi.org/10.1016/j.jebo.2005.06.012 4 顾恩国,陈宝香.具有不对称对手信息的两寡头博弈公共渔业资源的动力学模型分析J.中南民族大学学报:自然科学版,2008(3):96-101.5 Raymond,C.,Hugo,A.and KungAro,M.(2019)Model

32、ing Dynamics of Prey-Predator Fishery Model with Harvest-ing:A Bioeconomic Model.Journal of Applied Mathematics,2019,Article ID 2601648.https:/doi.org/10.1155/2019/2601648 6 Zhou,H.,Li,X.F.,Jiang,J.,et al.(2024)Global Dynamics of a Fisheries Economic Model with Gradient Adjustment.International Jour

33、nal of Bifurcation and Chaos,34,2450012.https:/doi.org/10.1142/S0218127424500123 7 Din,Q.,Yousef,A.M.and Elsadany,A.A.(2021)Stability and Bifurcation Analysis of a Discrete Singular Bioeco-nomic System.Discrete Dynamics in Nature and Society,2021,1-22.https:/doi.org/10.1155/2021/6679161 8 Abraham,R.

34、H.,Gardini,L.and Mira,C.(1997)Chaos in Discrete Dynamical Systems.Springer,New York.https:/doi.org/10.1007/978-1-4612-1936-1 9 李慧.正外部条件作用下寡头策略性行为演化机制研究D:硕士学位论文.兰州:兰州交通大学,2022.慕云田,周欢 DOI:10.12677/aam.2024.134147 1574 应用数学进展 10 Ly,S.,Auger,P.and Balde,M.(2014)A Bioeconomic Model of a Multi-Site Fisher

35、y with Nonlinear Demand Func-tion:Number of Sites Optimizing the Total Catch.Acta Biotheoretica,62,371-384.https:/doi.org/10.1007/s10441-014-9222-z 11 Liu,Y.-X.,Zhou,W.and Wang,Q.(2022)Global Dynamics of an Oligopoly Competition Model with Isoelastic De-mand and Strategic Delegation.Chaos,Solitons&F

36、ractals,161,112304.https:/doi.org/10.1016/j.chaos.2022.112304 12 史晓琳.不同捕捞成本函数的渔业资源模型的稳定性及 Hopf 分叉分析D:硕士学位论文.武汉:中南民族大学,2016.13 Li,H.,Zhou,W.,Elsadany,A.A.,et al.(2021)Stability,Multi-Stability and Instability in Cournot Duopoly Game with Knowledge Spillover Effects and Relative Profit Maximization.Ch

37、aos,Solitons&Fractals,146,110936.https:/doi.org/10.1016/j.chaos.2021.110936 14 Bischi,G.I.,Mammana,C.and Gardini,L.(2000)Multistability and Cyclic Attractors in Duopoly Games.Chaos,So-litons&Fractals,11,543-564.https:/doi.org/10.1016/S0960-0779(98)00130-1 15 周欢.一类非线性需求下渔业经济模型的动力学分析J.兰州文理学院学报(自然科学版),2023,37(6):9-16.16 Clark,C.W.,Clark,F.H.and Munro,G.R.(1979)The Optimal Exploitation of Renewable Resource Stocks:Problems of Irreversible Investment.Econometrica,47,25-47.https:/doi.org/10.2307/1912344

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服