ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:1.03MB ,
资源ID:3589026      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3589026.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(姚斌机电控制技术考试试卷及答案解析.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

姚斌机电控制技术考试试卷及答案解析.doc

1、Mechatronic Control SystemsSpring 2023Dr. Bin YaoFINAL EXAM April 30, 2023ProblemPoint ValuePoints Gained120220340420Total100INSTRUCTIONS: 1. This is a Closed book exam. You are allowed one help sheet of hand-written summary.2. Your exams must be stapled.3. Circle your final answers.4. Be neat and c

2、lear. PROBLEM 1 (20Points)Consider the following feedback system: Y(s)-ControllerPlantwhere.You are required to design a controller to meet the following performance specifications: (P1). Zero steady-state error for ramp type reference input and constant disturbance (P2). The resulting closed-loop s

3、ystem should not have excessive transient responses for step reference input , i.e., your design should avoid either excessive large overshoot or large undershoot in the step responses. To solve this problem, you are required to follow the following procedure:a) Determine the correct controller stru

4、cture that is needed to meet the performance requirement P1. To receive full credit, you need to justify your answer as well.b) Determine the suitable desired pole locations of the closed-loop system so that the performance requirement P2 can be satisfied. Again, to receive full credit, you need to

5、justify your answer as well.c) Determine the unknown controller parameters to meet the above performance requirements. Solutions:由上面两条定理可以得到结论:1、a). As the plant has an integrator, to satisfy (P1), the controller only needs one integrator, i.e., (1)With the controller (1), the closed-loop output is

6、given by (2)Thus, for ramp type reference input (i.e., ) and constant disturbance (i.e., ), the system output tracking error is (3)So as long as the CL system is stable (i.e., the denominator in (3) has all roots in LHP), the condition for applying FVT is satisfied. By FVT, you can easily show that

7、the steady-state error in (3) is zero.PROBLEM 1 (conts)b). As the plant has an unstable pole at 1, to avoid excessive overshoot due to this unstable pole, the CL bandwidth should be higher than the break frequency of this unstable pole, which can be roughly met by imposing the following conditions o

8、n dominant CL poles:(4)As the plant has a stable zero at -3 which tends to increase the overshoot significantly when it is slower comparing to the CL bandwidth, to avoid excessive overshoot, the following condition on dominant CL poles should be imposed normally:(5)Thus we can place the dominant CL

9、poles around 2 to make a compromise between the conflicting requirements of (4) and (5). Note that as this zero is stable, you can also cancel this zero in the controller design (by placing one CL pole at -3) to remove its effect on the CL response with respect to the reference input as well. In tha

10、t case, its effect still appears in the CLTF from the disturbance input to the output. c). With a second-order controller of the form (1), (6)we have four controller parameters free to choose and the resulting CL system has four poles. Thus we can arbitrarily place all four CL poles with the control

11、ler form of (6). For simplicity, let all CL poles at -2, which leads to the following desired CL characteristic polynomial (CLCP): (7)From (2), the actual CLCP with the controller (6) is (8)Comparing (7) and (8), we obtain (9)Thus, (10)PROBLEM 2 (20 Points)Consider the following two-DOF feedback sys

12、tem: SensorReference ValueNoises-ControllerPlantwhere and the system has the following characteristics: (C1) The input disturbance has significant energy in the frequency band 0, 1 rad/s.(C2) The measurement noise has significant energy in the frequency band 5, 100rad/s.(C3) The reference signal has

13、 significant energy in the frequency band 0, 10 rad/s.You are required to synthesize proper controller transfer functions and to meet the following specific design goals while taking into account the above system characteristics: (P1) Zero steady-state errors for ramp type output disturbances (P2) T

14、he response of the closed-loop system for step reference input has no oscillations.(P3) The closed-loop system should follow the reference signal well in the frequency band specified in (C3). To solve this problem, you may want to follow the following procedure:a) Determine the correct structure of

15、feedback controller that is needed to meet the steady-state performance requirement P1. b) Determine the suitable desired pole locations of the closed-loop system that take into account the system characteristics (C1)-(C3). To receive full credit, you need to justify your answer as well.c) Determine

16、 the parameters of the feedback controller to place the closed-loop poles at the desired locations.d) Determine a suitable filter transfer function so that (P2) and (P3) are satisfied. Solutions:a). As the plant has an integrator, to satisfy (P1), the controller only needs one integrator, i.e., (1)b

17、). (C1) demands that the CL bandwidth should be at least higher than 1 rad/s to have certain attenuation to the input disturbance in the frequency band of 0, 1 rad/s. (C2) implies that the CL bandwidth should not be set too high to amplify the effect of noise in the frequency band of 5, 100 rad/s. T

18、hus a good compromise for the CL bandwidth to meet both requirements should be around 2 to 3 rad/s. So assume that we would like to place dominant CL poles at -3 in the following. c). With a first-order controller of the form (C1) (2)there will be two controller parameters free to choose and the res

19、ulting CL system will be of order 2. Thus we can arbitrarily place the two CL poles. With , the desired CLCP is(3)The actual CLCP with the controller (2) is (4)Comparing (3) and (4), we obtain (5)d). With the controller (5), the CLTF from to is (6)Thus, to be able to track reference signal in the fr

20、equency band of 0, 10 rad/s, a feedforward TF is needed so that the resulting CLTF from to has a bandwidth far more than 10 rad/s. As such, we needs to cancel the slow CL poles at -3 in (6). Furthermore, to avoid overshoot, the stable zero in (6) should be cancelled as well. With all these in mind,

21、we can choose (7)where is the small time constant of the additional filter needed to make proper.Problem 3 (40 Points)Consider the control of an inertia load such as the rigid ECP emulator introduced in the lectures and the homework. In the presence of disturbance forces such as the Coulomb friction

22、 force, the inertia load dynamics can be described by: where represents the disturbance force. Assume that the disturbance force is constant but unknown (i.e., =unknown constant), and only the output is measured. a) Design a minimum-order observer to estimate the unmeasured state (i.e., the velocity

23、) and the unknown constant disturbance force. The observer gain should be chosen to place all observer poles at -5.b) Consider the following output feedback control law with disturbance estimate:where and represent the plant state and disturbance estimates from part a), and represents the filtered r

24、eference input. Determine the feedback gain so that all un-cancelled poles of the closed-loop transfer function from the filtered reference input to the output, i.e., , are at -1.c) Draw the equivalent block diagram of the closed-loop system with the above controller and estimator using transfer fun

25、ctions. To receive full credit, you need to obtain the explicit expressions of all relevant transfer functions.d) Obtain the closed-loop transfer function from the filter reference input to the output, and verify that all its un-cancelled poles are at -1 as required.e) Obtain the closed-loop transfe

26、r function from the disturbance input to the output, . Use this transfer function to show that constant disturbances will not cause any steady-state error in the output as expected. Solutions:a) . 降阶观测器极点配置旳措施For constant disturbance , the augmented system model is (1)which is in the standard form f

27、or designing minimum-order observer with and (2)The observer gain matrix can then be determined by placing the eigenvalues of (3)at -5, i.e., (4)(5)The minimum-order observer is thus given by(6)b). 状态反馈极点配置旳求法 :根据独立性原则,状态观测器和状态反馈互不影响,也就是K和L互不影响The closed-loop poles due to the state feedback gain are

28、 determined by (7)Thus, to have the un-cancelled CL poles at -1, (8)c). With the minimum-order observer (6), the control law is given by (9)Substituting (9) into (6), (10)Thus,(11)and the control law (9) in s-domain is given by (12)The equivalent block diagram of the above CL system can then be draw

29、n below:图中从u+d到Y旳输出是由原系统中旳A、B、C矩阵求出来旳!orFig.1d). From Fig.1, the CLTF from to is (13)which has all uncancelled poles at -1.e). From Fig.1, the CLTF from to is (14)which has a in the numerator. As such, , indicating that the constant disturbances will not cause steady-state error.Problem 4 (20 Points

30、)Consider the same second-order system as in Problem 3 but with an input disturbance, i.e.,where represents the disturbance force. Assume that the disturbance force is constant but unknown (i.e., =unknown constant), and only the output is measured. Design an output feedback controller using the tech

31、nique of state-estimator with disturbance estimation and compensation (i.e., ) to achieve the following performance requirement:a) Stable closed-loop system.b) Zero state-steady error for any constant input disturbance .c) All the un-cancelled poles of the closed-loop transfer function from the filt

32、ered reference input to the output, i.e., , are at -2.d) All other assignable closed-loop poles should be placed at -10. Solutions 1:As shown in Problem 3, the given system is not observable but detectable, and is not controllable but stabilizable. By introducing the coordinate transformation of (a1

33、)The system matrices in the new coordinate are (a2)which isolates the uncontrollable and unobservable mode represented by the coordinate . Though this mode cannot be moved with any state feedback and observable design, it is stable and does not contribute to the overall TF from the input to the outp

34、ut. Thus we can ignore this mode and only consider the controllable and the observable mode in synthesizing the output feedback controller. Thus the given system is reduced to(a3)For constant disturbance , the augmented system model is (a4)A full-order observer can then used to estimate the augmente

35、d states in (a4). The observer gain matrix should be chosen such that the eigenvalues of (a5)are at -10, -10, i.e., (a6)(a7)With the above observer gain, a full-order observer can be constructed as (a8)To have the CL poles by the state feedback at -2, from (a3), the state feedback gain for should be

36、 chosen as (忽视Z1,由于不可观) (a9)With the observer (a8) and the above gain in (a9), the following stabilizing output feedback control law can be used: (a10)Solutions 2:For constant disturbance , the augmented system model is (1)As shown in Problem 3, the above system is not observable but detectable, whi

37、ch means that we cannot move the unobservable mode with any observable designs but we still can design a stable state observer. So when a full-order observer is used to estimate the augmented states in (1), we can arbitrarily place the other two observer CL poles while the third one should be at -1.

38、 Thus, the observer gain matrix should be chosen such that the eigenvalues of (3)are at -10, -10, and -1, i.e., (4)(5)The fact that there are infinite number of solutions to the observer gains is due to the appearance of unobservable mode. With the observer gains satisfying (5), a stable full-order

39、observer can be constructed as (6)where can be any value. Again, as shown in Problem 3, the given system is not controllable but stabilizable with the uncontrollable mode given by . Thus, we cannot use state feedback to move the uncontrollable mode . The state feedback gain should thus be chosen such that the eigenvalues of (7)at -1 and -2 as required, which leads to (8)Again, the non-unique solution to is due to the appearance of uncontrollable mode. With the observer (6) and the gain in (8), the following stabilizing output feedback control law can be used: (9)where can be any value.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服