ImageVerifierCode 换一换
格式:PDF , 页数:41 ,大小:1.10MB ,
资源ID:3563822      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3563822.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人工智能和机器学习--PPT06-线性回归.pdf)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人工智能和机器学习--PPT06-线性回归.pdf

1、线性回归王秋月中国人民大学信息学院=0+10.01.02.0 x1081.0BudgetBoxOfficex1082.0线性回归0.01.02.0 x1082.01.0BudgetBoxOfficebox officerevenuecoefficient0=0+1moviebudgetcoefficient1x108线性回归0.01.02.01.0BudgetBoxOfficex108x1082.0=0 +10=80 million,1=0.6线性回归0.01.02.01.0BudgetBoxOfficex108x1082.0=0 +10=80 million,1=0.6给定1.6亿的预算,预

2、测票房收益为1.75亿使用线性回归预测0.01.02.01.0BudgetBoxOfficex108x1082.0哪个模型拟合得更好?0.01.02.01.0BudgetBoxOfficex108x1082.0Predicted valueObservedvalue()()计算残差0.01.02.01.0BudgetBoxOfficex108x1082.001+()()计算残差0.01.02.01.0BudgetBoxOfficex108x1082.0均方误差(Mean Squared Error,MSE)0.01.02.01.0BudgetBoxOfficex108x1082.0最小均方误差

3、0.01.02.01.0BudgetBoxOfficex108x1082.0代价函数其他评价指标平均绝对误差(平均绝对误差(Mean Absolute Error,MAE):):1=1()均方根误差(均方根误差(Root Mean Squared Error,RMSE):):1=1()2MAE is the easiest to understand,because its the average error.MSE is more popular than MAE,because MSE punishes larger errors.RMSE is even more popular tha

4、n MSE,because RMSE is interpretable in the y units.残差平方和(SSE):总离差平方和(TSS):决定系数决定系数(R2):):1 其他评价指标导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import LinearRegression创建该类的一个对象:创建该类的一个对象:LR=LinearRegression()训练模型拟合数据,并预测:训练模型拟合数据,并预测:LR=LR.fit(X_train,y_train)y_predict=LR.predict(X_test)线性回归的语法http

5、:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html 通过增加多项式特征来捕捉更高阶的数据特征()=0+1+22BudgetBoxOffice增加多项式特征 通过增加多项式特征来捕捉更高阶的数据特征“线性回归”意味着特征间的线性组合()=0+1+22+33BudgetBoxOffice增加多项式特征()=0+1 log()BudgetBoxOffice增加多项式特征 通过增加多项式特征来捕捉更高阶的数据特征“线性回归”意味着特征间的线性组合增加多项式特征 可以选择变量间的交互

6、项:()=0+11+22+312增加多项式特征 可以选择变量间的交互项:如何选择正确的函数形式:()=0+11+22+312检查每个变量与结果之间的关系导入包含转换方法的类:导入包含转换方法的类:from sklearn.preprocessing import PolynomialFeatures创建该类的一个对象:创建该类的一个对象:polyFeat=PolynomialFeatures(degree=2)创建多项式特征,并转换数据:创建多项式特征,并转换数据:polyFeat=polyFeat.fit(X_data)x_poly=polyFeat.transform(X_data)或者或

7、者x_poly=polyFeat.fit_transform(X_data)生成多项式特征的语法http:/scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.htmlerrorcross validation errortraining error21模型复杂度与误差XYModelTrue Function SamplesXYXYPolynomial Degree=1Polynomial Degree=3Polynomial Degree=922防止欠拟合与过拟合如何用一个如何用

8、一个9次多项式拟合数据,并防止过拟合?次多项式拟合数据,并防止过拟合?XYModelTrue Function SamplesXYXYPolynomial Degree=1Polynomial Degree=3Polynomial Degree=923防止欠拟合与过拟合()=12=1()()2XYModelTrue Function SamplesXYXYPoly Degree=9,=0.1Poly Degree=9,=1e-5Poly Degree=9,=0.024正则化(regularization)=12=1()()2+=12惩罚项收缩了所有系数的大小越大的系数被惩罚得越多,因为惩罚的是

9、平方25岭回归(Ridge Regression)(L2)=12=1()()2+=1226岭回归对模型参数的效果 =12=1()()2+=12惩罚项有选择地收缩了某些系数可以被用来做特征选择比岭回归收敛速度慢27套索回归(Lasso Regression)(L1)=12=1()()2+=1|28套索回归对模型参数的效果 =12=1()()2+=1|L1与L2正则化 岭回归和套索回归的综合,用以平衡稀疏和平滑两个问题 需要调节额外的参数,来分配L1和L2正则化惩罚项的比例10ElasticNet正则化 =12=1()()2+1=1|+2=12 正则化系数(1和2)是根据经验决定的使用测试数据调节

10、使用测试数据调节?测试数据训练数据训练数据超参数及其优化 正则化系数(1和2)是根据经验决定的 想让模型泛化-不要使用测试数据集来调节1和2使用测试数据集调节使用测试数据集调节?测试数据训练数据训练数据超参数及其优化NO!用交叉验证来调节用交叉验证来调节 训练数据训练数据验证数据验证数据测试数据测试数据超参数及其优化 正则化系数(1和2)是根据经验决定的 想让模型泛化-不要使用测试数据集来调节1和2 划分出另一个数据集来调节超参数-验证集(validation set)导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import Ridge创建该

11、类的一个对象:创建该类的一个对象:RR=Ridge(alpha=1.0)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:RR=RR.fit(X_train,y_train)y_predict=RR.predict(X_test)岭回归的语法导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import Ridge创建该类的一个对象:创建该类的一个对象:RR=Ridge(alpha=1.0)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:RR=RR.fit(X_train,y_train)y_predict=R

12、R.predict(X_test)岭回归的语法正则化参数正则化参数http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import RidgeCV创建该类的一个对象:创建该类的一个对象:RRcv=RidgeCV(alphas=1e-3,1e-2,1e-1,1,cv=4)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:RRcv=RRcv.fit(X_train,y_train)

13、y_predict=RRcv.predict(X_test)岭回归的语法RidgeCV 使用交叉验证自动确定使用交叉验证自动确定alpha的值的值http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import Lasso创建该类的一个对象:创建该类的一个对象:LR=Lasso(alpha=1.0)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:LR=LR.fit(X_t

14、rain,y_train)y_predict=LR.predict(X_test)套索回归的语法正则化参数正则化参数http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import LassoCV创建该类的一个对象:创建该类的一个对象:LRcv=LassoCV(alphas=1e-3,1e-2,1e-1,1,cv=4)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:LRcv=

15、LRcv.fit(X_train,y_train)y_predict=LRcv.predict(X_test)套索回归的语法LassoCV 使用交叉验证自动确定使用交叉验证自动确定alpha的值的值http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import ElasticNet创建该类的一个对象:创建该类的一个对象:EN=ElasticNet(alpha=1.0,l1_ratio=0.

16、5)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:EN=EN.fit(X_train,y_train)y_predict=EN.predict(X_test)ElasticNet回归的语法l1_ratio把把alpha的值分的值分配给配给L1/L2http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html导入包含回归方法的类:导入包含回归方法的类:from sklearn.linear_model import ElasticNetCV创建该类的一个对象:创建该类

17、的一个对象:ENcv=ElasticNetCV(alphas=1e-3,1e-2,1e-1,1,cv=5)拟合训练数据,并在测试数据上预测:拟合训练数据,并在测试数据上预测:ENcv=ENcv.fit(X_train,y_train)y_predict=ENcv.predict(X_test)ElasticNet回归的语法ElasticNetCV 使用交叉验证自动确定使用交叉验证自动确定alpha和和l1_ratio的值的值http:/scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.htmlJupyter演示第6章-线性回归.ipynb

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服