ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:255.50KB ,
资源ID:3557506      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3557506.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(计数原理与排列组合经典题型.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

计数原理与排列组合经典题型.doc

1、计数原理与排列组合题型解题方法总结计数原理一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类)如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可

2、。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4. 组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3) 组合数的性质二、.典例解析 题型1:计数原理例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, 每位学生必须参加一项竞赛,则有不同的参赛方法有 ; 每项竞赛只许有一位学生参加,则有不同的参赛方法有 ; 每位学生最多参加一项竞

3、赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。例2(1)如图为一电路图,从A到B共有 条不同的线路可通电。 A B 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 _ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜

4、中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?(2) 三边均为整数,且最大边长为11的三角形的个数是 题型2:排列、组合问题处理策略一.元素个数较少的排列组合问题枚举法:1、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?2、学号为1、2、3、4的学生坐到编号为1、2、3、4的四张凳子上,要求学生的学号与其所坐的凳子编号不同,问有多少种不同的坐法?二、特殊元

5、素和特殊位置优先策略3、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.4、 五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A120种 B96种 C78种 D72种 三、相邻捆绑、不相邻插空5、(1)7人站成一排照相, 若要求甲、乙、丙不相邻,则有多少种不同的排法? (2)7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?6、马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?7、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为8、一

6、个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?四、 不尽相异元素、定序问题倍缩法9、(1)7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 (2)10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? (3)由4个A和3个B可以组成多少个7位字符信息?五、 分排问题“直排法”10、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?11、8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法六、重排问题方幂策略(住店、投邮、影射)12、把6名实习生分配到7个车间实习,共有多少种不同的分法1

7、3、某8层大楼从一楼电梯上来8名乘客人,他们 到各自的一层下电梯,则他们下电梯的方法有多少种?七.构造模型的策略14、10个相同的球装5个盒中,每盒至少一个有多少装法?15、 方程a+b+c+d=12有多少组正整数解?八、排列组合混合问题先选后排策略16、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.17、一个班有6名战士,其中正副班长各1人,现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_ 种九、.正难则反总体淘汰策略18、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十、无

8、编号平均分组问题除法策略19、6本不同的书平均分成3堆,每堆2本共有多少分法?20、10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 21、某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 十一 化归策略 22、 25人排成55方队,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?23、某城市的街区由45条街道组成,从西南A走到东北B的最短路径有多少种?三、练习题组:1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

9、2、把6名实习生分配到7个车间实习,共有多少种不同的分法3.(1)在 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( ) (A)36个 (B)24个 (C)18个 (D)6个(2)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( ) (A)108种 (B)186种 (C)216种 (D)270种 (3)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( ) A.6 B. 12 C. 18 D. 24 (4)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,

10、要求两个舞蹈节目不连排,则不同排法的种数是( ) (A)1800 (B)3600 (C)4320 (D)50404.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答); (2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示). 5.(1)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( ) (A)30种 (B)90种 (C)180种 (D)270种 (2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放

11、入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种 6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种; (2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有 (A)150种 (B)180种 (C)200种 (D)280种 7、.已知直线ax+by+c=0中的a,b,c是取自集合-3,-2,-1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数8、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项工程

12、,乙公司承包1项,丙、丁各承包2项,问共有 种承包方式? 9、 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?10、x+y+z+w=100求这个方程组的正整数解的组数11、.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,.有多少投法12、.正方体的8个顶点可连成多少对异面直线13、3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?14(2008陕西,16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬

13、手完成。如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种(用数字作答)。15.(2009年海南宁夏15)7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有 种(用数字作答).16、(2008宁夏、海南,9)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有 ( )A20种B30种C40种D60种 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服