ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:3.83MB ,
资源ID:3538650      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3538650.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(柔性关节空间机械臂传感容错无模型自适应控制.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

柔性关节空间机械臂传感容错无模型自适应控制.pdf

1、第 45 卷第 1 期 2024 年 1 月宇 航 学 报Journal of AstronauticsNo.12024JanuaryVol.45柔性关节空间机械臂传感容错无模型自适应控制浦玉学1,2,3,陈演1,李孝宝1(1.合肥工业大学土木与水利工程学院,合肥 230009;2.复旦大学航空航天系,上海 200433;3.土木工程结构与材料安徽省重点实验室,合肥 230009)摘要:针对传感信号畸变、丢失等故障状态严重影响空间机械臂控制系统性能的问题,提出基于空间机械臂运动传感器故障观测的无模型自适应容错控制方法。采用动态线性化和递推参数估计思想设计传感故障监测器,实现对传感畸变及数据丢失

2、等故障的判定,并进行运动状态预测估计;建立包含跟踪误差变化率项的无模型自适应控制准则函数,有效惩罚由传感故障引起的参数估计突变问题;设计面向柔性关节空间机械臂的新型传感容错无模型自适应控制(SFT-MFAC)算法。仿真结果表明,在不同传感故障情况下,所提控制策略均能快速准确识别传感故障信息,避免系统瞬时发散,有效延长系统响应时间,增加控制系统的鲁棒性。关键词:柔性关节;空间机械臂;传感故障;无模型自适应控制;容错控制中图分类号:V448.2 文献标识码:A 文章编号:1000-1328(2024)01-0133-09 DOI:10.3873/j.issn.1000-1328.2024.01.0

3、14Sensor Fault-tolerant Model-free Adaptive Control of Flexible Joint Space ManipulatorPU Yuxue1,2,3,CHEN Yan1,LI Xiaobao1(1.College of Civil Engineering,Hefei University of Technology,Hefei 230009,China;2.Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China;3.Anhui Key

4、Laboratory of Civil Engineering Structures and Materials,Hefei 230009,China)Abstract:A model free adaptive fault-tolerant control method based on fault observation of space manipulator motion sensors is proposed to address the serious impact of sensor signal distortion,loss,and other fault states on

5、 the performance of space manipulator control systems.Dynamic linearization and recursive parameter estimation were used to design the sensor fault monitor,which can judge the sensor disturbance and data loss and predict the motion state.A model-free adaptive control criterion function containing tr

6、acking error rate of change term was established to effectively punish the abrupt change of parameter estimation caused by sensing anomalies.A novel sensor fault-tolerant model-free adaptive control(SFT-MFAC)algorithm for flexible joint space manipulator was designed.The simulation results show that

7、 the proposed control strategy can quickly and accurately identify the sensor fault information,avoid the instantaneous divergence of the system,effectively extend the response time of the system,and increase the robustness of the control system under different sensor abnormalities.Key words:Flexibl

8、e joint;Space manipulator;Sensor fault;Model-free adaptive control;Fault-tolerant control0引言近年来,随着机器人技术的发展,结构轻、载重比高和耗能低逐渐成为空间机械臂发展的重要趋势,也不可避免地带来机械臂驱动关节柔性化和非线性问题1。关节是空间机械臂空间任务操作的直收稿日期:2023-04-07;修回日期:2023-10-07基金项目:安徽省自然科学基金资助项(2208085ME129,2208085MA17);中国博士后科学基金资助项目(2023M730651);机械结构力学及控制国家重点实验室开放课题

9、(MCMS-E-0121G01)宇航学报第 45 卷接执行部件,是保证机械臂在轨操控性能的关键组成设备。然而柔性关节传动过程中存在的传动结构阻尼、非线性刚度以及动态摩擦综合作用引起的关节强非线性会导致空间机械臂关节跟踪精度降低,给空间机械臂精细化操作带来严重挑战2-3。另外,太空环境恶劣复杂,作为典型的舱外多自由度机电一体化系统,会出现受到温差交替、强磁干扰等因素影响引起驱动关节传感系统信噪比降低、性能衰退甚至失效的情况,因此面向空间机械臂的传感故障检测和容错控制技术引起了国内外广泛关注4。目前,柔性关节精确建模是机械臂控制系统设计的主要挑战。Spong5提出将柔性关节简化为线性弹簧模型,但没

10、有考虑关节中的迟滞、摩擦等非线性因素,无法全面反映关节真实动力学特性。后续有很多学者围绕关节迟滞、摩擦等非线性因素进行建模研究,例如描述迟滞刚度模型的KP模型6、Preisach模型7、PI模型8等,描述摩擦的LuGre模型9和GMS模型10等。但是描述柔性关节的复杂非线性因素和动态特性会导致关节模型过于复杂且难以反映关节真实动力学特性,这给传统的基于模型的控制模式带来严重挑战。因此,研究基于无模型的控制方法成为增强空间机械臂控制系统性能的一项具有重要意义的工作。无模型指的是控制器设计过程中,仅需要系统的输入和输出数据,不需要被控对象物理模型参数。无模型姿态解耦控制11、PID控制12、迭代学

11、习控制13均是比较成熟且应用广泛的无模型控制方法。近年来,侯忠生教授14提出的无模型自适应控制(Model-free adaptive control,MFAC),因能够实现未知非线性的受控系统结构与参数自适应控制而备受关注。浦玉学等15将模糊策略与无模型自适应控制相结合,实现了柔性空间机械臂碰撞过程的振动抑制。然而,MFAC作为基于数据驱动的控制算法,对数据的真实性和有效性非常依赖。对于空间机械臂而言,真实有效的运动信息的获取只能依托各类传感器。太空环境恶劣复杂,容易引起传感器等电子元件状态故障,包括太空环境、机械臂运动、末端负载等动态变化引起的传感信号畸变,太阳辐射、电磁风暴等环境因素造成

12、的传感元件老化、破损。传感器故障会导致传感数据异常,无法反映空间机械臂的真实运动状态。传感器容错控制引起了很多学者的关注。黄鹏飞等16针对高超声速飞行器强非线性和强噪声问题,开展了迎角传感器故障诊断方法研究;Wang等17基于 RBF神经网络算法研究了一类具有传感器故障的离散系统容错跟踪控制问题;雷荣华等18针对关节存在部分失效故障的柔性空间机械臂系统,提出一种自适应H容错抑振混合控制算法;马艳如等19设计了一种基于自适应神经网络的非线性容错控制律,解决控制系统存在的干扰、故障及不确定性问题。综上所述,传感系统故障检测和容错控制是保证空间机械臂控制系统安全稳定运行的必要环节。但目前适用于无模型

13、控制的传感系统故障识别和容错控制研究尚不多见。因此,本文提出空间机械臂关节运动传感器故障检测和无模型自适应容错控制方法。基于动态线性化和递推参数估计方法实现对传感信息存在畸变及数据丢失情况进行判定及对关节实际运动状态进行预测估计;建立包含跟踪误差变化率项的无模型自适应控制新型准则函数,有效惩罚由传感故障引起的参数估计突变问题;最后设计新型传感容错无模型自适应控制(Sensor fault-tolerant model-free adaptive control,SFT-MFAC)算法。通过上述方案,实现快速诊断故障状态,并做出有效控制决策,短期内可有效避免传感故障导致的控制系统瞬时发散,增加系

14、统响应时间,保证系统的稳定性。1双连杆柔性关节空间机械臂双连杆柔性关节机械臂是由柔性关节和刚性连杆组成的机电系统,其模型结构如图1所示。其中 i=1,2,Jmi为第 i 个电机转子中心转动惯量,mmi为第i个电机转子质量,Jli为第i个机械臂中心转动惯量,mli为第i个机械臂质量,li为第i个机械臂长度,li为i关节负载侧转动角度,Tfi为i关节内部摩擦,Ni为i关节减速比,i为i关节扭转力矩,mi为i关节电机端力矩,mi为i关节电机转动角度,mp为末端负载质量。本节建立双柔性关节机械臂动力学模型,为后文控制方法的验证和控制仿真试验的开展提供模型对象。1.1空间机械臂建模利用拉格朗日方程,推导

15、双柔性关节机械臂动力学方程。柔性关节机械臂的动能包括刚性臂动能、关节处动能及末端负载动能。势能为柔性关节产生的弹性势能,太空环境忽略重力势能。可得双134第 1 期浦玉学等:柔性关节空间机械臂传感容错无模型自适应控制柔性关节机械臂模型为:M()ll+C()l,ll=Jmm+N-1+Tf()m=m(1)式中:M(l)为机械臂转动惯量矩阵,C(l,l)为离心力、科氏力矩阵,Jm为电机转动惯量矩阵,m=m1,m2T和l=l1,l2T分别为电机侧和负载侧转角向量,m=m1,m2T为两关节电机输出力矩,N=diag(N1,N2)为关节减速器传动比向量,Tf(m)为关节内部摩擦力列向量,=1,2T为关节扭

16、转力矩向量,i=f(i)一般为关节扭转角的非线性函数,表现为关节非线性迟滞刚度。i为由关节柔性引起的关节扭转角。i=miNi-li(2)1.2关节非线性建模为表示关节非线性,选择LuGre摩擦模型模拟关节摩擦,选择PI迟滞模型与非线性刚度叠加模拟关节迟滞。1.2.1关节摩擦建模LuGre摩擦模型表达式为:dzdt=mi-0|mis(mi)zTf()mi=0z+1dzdt+mis()mi=sgn()miTc+()Ts-Tcexp()-()mis(3)式中:z表示鬓毛平均挠度,s(mi)表示Stribeck效应函数,Tc表示库仑摩擦力矩,Ts表示静摩擦力矩,s表示临界Stribeck速度,表示St

17、ribeck形状系数,0表示鬃毛刚度,1表示鬃毛阻尼系数,表示粘滞摩擦系数。1.2.2关节迟滞刚度建模第i个关节的PI迟滞模型由有限个play算子各自加权进行线性叠加构成,play算子数学表达式为 hpi()i()0=maxi()0-r,mini()0+r,0hpi()i()t=maxi()t-r,mini()t+r,hpi()i()t-1(4)式中:r为play算子的阈值,i(t)为算子的输入,hpi为算子的输出。将n个play算子加权叠加得到PI迟滞模型,数学表达式如下:hi(i(t)=j=1nwjhpi(i(t)(5)式中:n为play算子个数,hi为PI模型输出,wj为第j个算子的权值

18、。采用三次多项式表示非线性刚度曲线:ni(i(t)=1i(t)+23i(t)(6)式中:1和2为非线性刚度系数。由此得到第i个关节迟滞刚度模型为:i=j=1nwjhpi(i(t)+1i(t)+23i(t)(7)由式(1)(7)可知关节非线性因素复杂、建模困难,考虑到这一问题,本文基于无模型自适应控制理论,设计如下控制方案,实现对空间机械臂的运动控制。2传感容错无模型自适应控制2.1空间机械臂动力学模型转化为便于进行控制器设计,基于紧格式线性化的图1双连杆柔性关节机械臂Fig.1Double flexible joint manipulator135宇航学报第 45 卷思想将空间机械臂动力学方程

19、进行形式上转化:N-1M(l)l+N-1C(l,l)l+Jmm+Tf(m)=m(8)将空间机械臂系统离散化,设采样时间为T,时间离散点序号k。定义系统输入向量u(k)=0,0,m1,m2T,系统输出向量y(k)=l1,l2,l1,l2T,则空间机械臂动力学方程式(8)可改写为:y(k)=M-1(k)u(k)-M-1(k)C(k)y(k)-M-1(k)H(k)(9)式 中:M-1(k)=I00N-1M-1,C(k)=0I0N-1C-1,H(k)=0Jmm+Tf()m。进一步有:y(k)=y()k+1-y()kT(10)k时刻空间机械臂系统(9)可以表示为:y(k+1)=f(y(k),u(k)=(

20、)I-TM-1()k C()ky(k)+TM-1(k)u(k)-TM-1(k)H(k)(11)对系统(11)提出两个假设,即:假设1.f()关于系统输入u(k)的偏导数是连续的。假设2.系统(11)满足广义Lipschitz条件,即对任意k1 k2,k1,k2 0,u(k1)u(k2),满足:y(k1+1)-y(k2+1)bu(k1)-u(k2)(12)其中b 0是常数。对于满足假设 1、2 的非线性系统(11),当u(k)0时,引 入 伪 雅 可 比 矩 阵(Pseudo Jacobian matrix,PJM)(k)R4 4。注意,该矩阵仅在无模型自适应控制中使用,与机械臂的雅可比矩阵并非

21、同一概念,使系统(11)转化为如下动态线性数据模型:y(k+1)=y(k)+(k)u(k)(13)式中:u(k)=u(k)-u(k-1),且对于任意时刻k,(k)有界,具体展开为:(k)=11()k12()k13()k14()k21()k22()k23()k24()k31()k32()k33()k34()k41()k42()k43()k44()k R4 4为了后文稳定性分析的严谨性,做出如下假设:假设3.(k)是对角占优矩阵,即|ij(k)c1c2|ii(k)bc2b 1,c2 3c1()2b+1i,j=1,4,i j(14)且(k)中各个元素符号对于任意时刻保持不变。2.2传感故障识别及容错

22、设计2.2.1传感故障监测器设计y(k)=l1,l2,l1,l2T为负载侧关节运动状态估计值,由式(13)可设计y(k)的迭代更新式:y(k+1)=y(k)+(k)u(k)+y(k)(15)式中:为估计误差权重因子,y(k)为估计误差如下y(k)=y(k)-y(k)(16)将k时刻传感器得到的传感值与估计器得到的估计值对比即可判定传感信息是否异常。给定如下判别式函数(k):(k)=1,li()k+1li()k+1(k)=0,其他(17)式中:,为经验阈值因子,经验阈值为传感值与预测值比值的容许范围。考虑到预测值与传感值存在一定误差,所以容许范围不宜过小,这会导致误差信号被识别为异常信号,也不宜

23、过大,这会遗漏异常信号。通过选取合适的经验阈值,故障监测器能实现对不同程度传感故障的监测,当扰动特别小时,由于后文设计的控制算法存在自适应性,也能保证算法的稳定性。通过(k)是否为零即可判断对应i关节传感数据是否异常。2.2.2传感信号估计器设计1)当(k)=1时,传感无异常,直接使用关节传感器实际测量运动状态信息输入至机械臂控制系统。考虑到控制过程采用的是瞬态信息,现对式(16)进行一定改进,对误差进行迭代处理,增强算法鲁棒性:y(k+1)=(1-)y(k)+y(k+1)-y(k+1)(18)式中:为迭代系数。136第 1 期浦玉学等:柔性关节空间机械臂传感容错无模型自适应控制2)当(k)=

24、0时,传感出现异常,则使用基于式(15)的负载侧关节运动状态估计信息,将其输入至机械臂控制系统中,此时估计误差暂停迭代更新。考虑上述两种情况,得到参与控制系统的响应信号:y(k)=y(k),(k)=1y(k),(k)=0(19)2.3改进的无模型自适应控制2.3.1控制输入准则函数传统的无模型自适应控制基于准则函数Fc对系统输入进行控制。Fc(u(k)=yd()k+1-y()k+12+u()k-u()k-12(20)式中:yd(k)为关节负载侧期望转动角度及角速度。为了在保证算法响应速度的同时减小超调量,本文定义跟踪误差变化率,并将其引入控制输入准则函数中:Fc()u()k=yd()k+1-y

25、()k+12+u()k-u()k-12+()yd()k+1-y()k+1-()yd()k-y()k2(21)新的输入准则函数可以有效惩罚由传感故障引起的参数估计变化过大,增加算法的稳定性。2.3.2关节控制力矩迭代更新将式(13)代入式(21),并对u(k)求偏微分,运用最优性准则令其为0,可以得到关节控制力矩:u(k)=u(k-1)+21T()k+2()k2(yd()k+1-)y()k-2T()k+2()k2(yd(k)-y(k-1)+3T()k()k-1 u()k-1+2()k2(22)2.3.3伪雅克比矩阵迭代更新在控制过程中,由于输入输出实时变化,PJM的真实值是动态不可测的,考虑PJ

26、M的极小化及系统动态线性模型式(13),设计判别函数Qc对PJM进行估计:Qc(k)=()k-()k-12+y()k-()k u()k-12(23)式中:y(k)=y(k)-y(k-1),(k)为PJM估计值。对式(23)极小化处理后得到:(k)=(k-1)+u()k-1+u()k-12(y(k)-(k-1)u(k-1)(24)考虑到假设3,PJM重置算法如下:ii(k)=ii(0),|ii(k)|bc2 或sgn(ii(k)sgn(ii(0)(25)ij(k)=ij(0),|ij(k)|c1 或sgn(ij(k)sgn(ij(0)(26)式中:i,j=1,4,i j。式(22)、(24)中引

27、入,是为防止分母为零,导致算法出错,同时还可以使得系统更具有平滑性,防止空间机械臂系统输出发散或不能达到期望值。1,2,3及是步长因子,使算法更具有普遍意义。(0)是PJM估计值的初始值。综上,SFT-MFAC控制框图如图2所示。2.3.4SFT-MFAC算法稳定性和收敛性证明对于多输入多输出离散时间非线性系统,在满足假设 1,假设 2和假设 3的条件下,SFT-MFAC 控制方案具有如下性质:当yd(k+1)=y为常数时,存在一个大于0的正数min,当 min时:1)系统跟踪图2SFT-MFAC控制框图Fig.2SFT-MFAC control block diagram137宇航学报第 4

28、5 卷误差是收敛的;2)系统输出序列y(k)和输入序列u(k)是有界的。证明过程简述如下:本文的SFT-MFAC算法并未对经典MFAC算法 的(k)进 行 更 改,这 可 以 保 证(k)的 有界性20。证明系统输出误差序列是有界且收敛的。定义系统输出误差为:e(k)=yd(k)-y(k)(27)利用Gerschgorin圆盘原理及三角不等式可知,存在小正数d1,d2和d3,满足:e()k+1v(dk1+dk-12-dk-23)e()1v(28)式中:v为对应项的相容范数。即证明系统输出误差序列是有界且收敛的。因为yd是给定常量,且e(k)有界,得出系统输出序列y(k)的有界性。证明输入序列u

29、(k)的有界性。对式(22)进行等价变换u(k)=21T()k+2()k2(yd(k+1)-y(k)-2T()k+2()k2(yd(k)-y(k-1)+3T()k()k-1 u()k-1+2()k2(29)又 有(k)有 界,由 SFT-MFAC 算 法 控 制 律(22),得到满足式(30)的正数M1,M2及M3。2lT()k+2()k2v M1()2+3T()k+2()k2v M23T()k+2()k2v M3(30)结合SFT-MFAC控制律(22)及式(30)得:u()kvu()kv+u()k-1v+u()0v M1()1-dk+111-d1+1-dk21-d2-1-dk-131-d3

30、-M2(1-dk11-d1+1-dk-121-d2-)1-dk-231-d3-M3(1-dk-111-d1+1-dk-221-d2-)1-dk-331-d3e()1v+u()0v(31)由式(31)得到系统输入序列u(k)是有界的。上述证明是在传感器并未发生故障的情况下进行的,当传感器发生故障时,考虑到对异常信号的估计值是由动态线性数据模型式(13)变化的式(15)得到的,当式(15)满足假设2时,即可证明传感器出现故障后,采取的传感信息估计值也是稳定有界的。将式(15)代入假设2的式(12)中,得到式(32):y()k1+()k1u()k1+y()k1-y()k2+1bu()k1-u()k2

31、(32)令k1 k2,由式(15),y(k1)可以分解为式(33):y(k1)=(k1-1)u(k1-1)+(k1-2)u()k1-2+()k2+1 u()k2+1+y()k2+1+y(k1-1)+y(k1-2)+y(k2+1)(33)代入式(32),得:()k1u()k1+()k1-1 u()k1-1+(k1-2)u()k1-2+()k2+1 u()k2+1+y()k1+y()k1-1+y()k1-2+y()k2+1 bu()k1-u()k2(34)考虑到当传感器发生故障时,估计误差y(k)暂停迭代(假定此时估计误差为e0),以及PJM的有界性。那么一定存在一个正数 M,使式(34)可以转化

32、为:()k1u()k1+()k1-1 u()k1-1+(k1-2)u()k1-2+()k2+1 u()k2+1+y()k1+y()k1-1+y()k1-2+y()k2+1M()u()k1-u()k2+(k1-k2)e0 bu()k1-u()k2(35)考虑到(k1-k2)e0为一有限常值,选取合适的常数b,能够使式(35)成立,即当传感器发生故障时,采取的传感信息估计值也是稳定有界的。综上所述,本文设计的SFT-MFAC算法是稳定且收敛的。138第 1 期浦玉学等:柔性关节空间机械臂传感容错无模型自适应控制3柔性关节机械臂控制仿真实验为验证所提出的传感故障监测器、传感信号估计器以及 SFT-M

33、FAC算法的有效性,采用图 1所示双连杆柔性关节空间机械臂进行运动控制仿真实验。考虑到空间机械臂关节主要以伺服驱动电机作为执行机构,其中旋转变压器是常见的位置传感方式,由于太空中太阳辐射以及电磁风暴等环境因素影响,旋转变压器容易发生故障,旋转变压器的故障类型主要包括连接器断路故障导致的传感信号畸变4以及旋转变压器卡死引起的传感信号丢失21等(如图3所示)。本节设置传感数据畸变和传感数据丢失两种传感故障情况进行数值仿真实验。受控空间机械臂采用第1节所述方法进行动力学建模,其中空间机械臂系统参数如表1所示,空间机械臂系统控制算法参数如表2所示。机械臂关节参考转动角度为:l1(t)=l2(t)=2

34、6()t55-15()t54+10()t53(36)3.1单关节传感故障情况设置33.2 s、3.43.6 s、3.84 s关节1传感器数据畸变,严重偏离正常容错阈值,其中随机波动由Simulink中的随机函数表示,如图4所示。通过本文设计的传感故障监测器,34 s时关节1传感信号3次异常状态均被准确识别。对传感故障信号进行估计预测,结果如图5所示。34 s关节1转角的传感器监测值与实际值误差为116.85%,经过处理后误差为1.80%。可见在传感故障情况下,传感预测值可以有效估计监测值。采用本文所提出的SFT-MFAC算法运动控制效果如图6所示,在SFT-MFAC控制下的误差为3.10%。1

35、.61.51.71.81.92.02000400200600800关节转角/()时间/s(a)传感数据畸变1.61.51.71.81.92.00100300200400500关节转角/()时间/s(b)传感数据丢失实际转角旋变观测转角实际转角旋变观测转角图3旋转变压器故障导致的信号异常Fig.3Signal abnormality caused by rotating transformer fault表1空间机械臂参数Table 1Space manipulator parameters空间机械臂参数电机转子 1、2 中心转动惯量/(kgm2)电机转子 1、2 质量/kg机械臂 1 质量/k

36、g机械臂 1 长度/m机械臂 2 质量/kg机械臂 2 长度/m末端负载质量/kg减速比数值0.10.50.50.20.750.31100表2控制参数Table 2Control parameters参数123数值2110.20.010.1参数(0)数值0.110.951.05diag(0.5,0.5,0.5,0.5)3069121500.31.20.90.61.51.8关节1转角/rad时间/s(a)传感数据畸变情况下关节1传感监测值及其容许范围传感监测值监测上限监测下限306912151102异常信号时间/s(b)传感故障监测器故障判别图4关节1关节角信号及故障判别Fig.4Joint a

37、ngle signal and fault diagnosis of joint 13069121500.31.20.90.61.51.8关节1转角/rad时间/s传感监测值 关节实际转角 传感估计预测值 2.54.510.2图5关节1关节角度估计预测值Fig.5Joint angle estimate predicted value of joint 1139宇航学报第 45 卷3.2双关节传感故障情况考虑2个关节同时出现传感故障情况。设置33.2 s、3.43.6 s、3.84 s关节1传感数据畸变,同时关节2传感数据丢失。关节1故障判别、关节角度估计及控制情况与3.1节类似,此处不再赘述

38、。图 7 为关节 2 传感故障监测器监测的异常信号。34 s时关节2传感信号3次异常状态均被准确识别。对传感故障信号进行估计预测,结果如图8所示,34 s关节2转角的传感器监测值与实际值误差为100%,经过处理后误差仅为3.13%。采用本文所提出的 SFT-MFAC 算法运动控制效果如图 9 所示,在SFT-MFAC控制下的误差为3.35%。综上,即使空间机械臂关节传感器都发生故障,本文所提出的SFT-MFAC算法仍能有效识别故障信号,并对故障信号做出预测估计,在传感器发生故障的情况下,保持空间机械臂运动的稳定性。4结论本文以双柔性关节空间机械臂为研究对象,针对复杂太空环境易导致空间机械臂传感

39、器系统不稳定甚至故障的问题,提出基于空间机械臂运动传感器故障观测的无模型自适应容错控制方法。可以发现:1)所设计的传感故障监测器和传感信号估计器,可有效实现对传感数据畸变及丢失等故障的判定,并进行实际运动状态预测估计;2)建立的包含跟踪误差变化率项的无模型自适应控制准则函数,可有效解决由传感故障引起的参数估计突变问题;3)所提出的SFT-MFAC控制算法能有效控制关节传感信息异常情况下的空间机械臂运动,有效提高控制算法的鲁棒性。本文方法可以有效进行传感故障识别判断,以保障后续操作任务的可靠执行。可应用于:1)在关节传感故障突发时,空间机械臂能够实现快速传感故障识别、平稳安全停机;2)可避免由传

40、感信号突变引起的控制系统发散,为备用控制算法切换提供充足的缓冲时间,进一步提高控制系统的鲁棒性。值得注意的是,当传感器长期处于故障状态,需要考虑使用其他传感器或机械臂模型进行校正或融合处理。参 考 文 献1 潘昌忠,费湘尹,周兰,等.柔性关节机械臂的自适应命令滤波输出反馈控制 J.西安交通大学学报,2022,56(5):199-208.PAN Changzhong,FEI Xiangyin,ZHOU Lan,et al.Adaptive command filtered output feedback control for flexible joint manipulator J.Journ

41、al of Xi an Jiaotong University,2022,563069121500.31.20.90.61.51.8关节1转角/rad时间/s期望转角SFT-MFAC2.54.50.70.1图6关节1控制效果Fig.6Control effect of joint 13069121500.31.20.90.61.51.8关节2转角/rad时间/s(a)传感数据丢失情况下关节2传感监测值及其容许范围传感监测值监测上限监测下限306912151102异常信号时间/s(b)传感故障监测器故障判别图7关节2关节角信号及故障判别Fig.7Joint angle signal and fa

42、ult diagnosis of joint 23069121500.31.20.90.61.51.8关节2转角/rad时间/s传感监测值 关节实际转角 传感估计预测值 2.54.50.60图8关节2关节角度估计预测值Fig.8Joint angle estimate predicted value of joint 23069121500.31.20.90.61.51.8关节2转角/rad时间/s期望转角SFT-MFAC2.54.50.70.1图9关节2控制效果Fig.9Control effect of joint 2140第 1 期浦玉学等:柔性关节空间机械臂传感容错无模型自适应控制(5

43、):199-208.2 LI S R,SHAO Z L,XU P D,et al.Robust adaptive control for coordinated constrained multiple flexible joint manipulators with hysteresis loopJ.Mathematical Problems in Engineering,2018:1-9.3 MADSEN E,ROSENLUND O S,BRANDT D,et al.Comprehensive modeling and identification of nonlinear joint d

44、ynamics for collaborative industrial robot manipulatorsJ.Control Engineering Practice,2020,101:104462.4 高新栋.永磁同步电机位置传感器故障检测及容错控制研究D.哈尔滨:哈尔滨工业大学,2021.GAO Xindong.Research on fault detection and fault tolerant control of permanent magnet synchronous motor position sensorD.Harbin:Harbin Institute of Te

45、chnology,2021.5 SPONG M W.Modeling and control of elastic joint robotsJ.Journal of Dynamic Systems,Measurement,and Control,1987,109(4):310-318.6 谢胜龙,李铁风,王斌锐,等.基于KP模型的气动肌肉迟滞建模方法 J.中国机械工程,2020,31(10):1183-1189.XIE Shenglong,LI Tiefeng,WANG Binrui,et al.Hysteresis modeling method of pneumatic muscles b

46、ased on KP model J.China Mechanical Engineering,2020,31(10):1183-1189.7 武毅男,方勇纯.基于Preisach模型的深度学习网络迟滞建模 J.控制理论与应用,2018,35(6):723-731.WU Yinan,FANG Yongchun.Hysteresis modeling with deep learning network based on Preisach model J.Control Theory&Applications,2018,35(6):723-731.8 卢荣华,陈特欢,娄军强,等.MFC致动器的动

47、态迟滞模型辨识及补偿控制 J.振动与冲击,2022,41(10):301-308.LU Ronghua,CHEN Tehuan,LOU Junqiang,et al.Identification and compensation control of the dynamic hysteresis model of MFC actuatorsJ.Journal of Vibration and Shock,2022,41(10):301-308.9 李俊阳,赵琛,夏雨,等.基于改进LuGre摩擦模型的机器人关节模糊自适应反步控制 J.湖南大学学报(自然科学版),2022,49(10):147-1

48、56.LI Junyang,ZHAO Chen,XIA Yu,et al.Adaptive fuzzy backstepping control for robot joint based on modified LuGre friction model J.Journal of Hunan University(Natural Sciences),2022,49(10):147-156.10 杨浩锦.基于GMS模型的伺服进给系统精细化摩擦建模与误差补偿技术研究 D.济南:山东大学,2020.YANG Haojin.Study on elaborate friction modeling an

49、d error compensation for servo feed system based on GMS modelD.Jinan:Shandong University,2020.11 张鑫,刘金国.基于时延估计的空间机器人无模型姿态解耦控制 J.宇航学报,2021,42(9):1150-1161.ZHANG Xin,LIU Jinguo.Model-free attitude decoupling control of space robots based on time-delay estimationJ.Journal of Astronautics,2021,42(9):115

50、0-1161.12 BINGUL Z,KARAHAN O.Real-time trajectory tracking control of Stewart platform using fractional order fuzzy PID controller optimized by particle swarm algorithmJ.Industrial Robot,2022,49(4):708-725.13 ZHU M F,YE L J,MA X S.Estimation-based quadratic iterative learning control for trajectory

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服