ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:15.44KB ,
资源ID:3530524      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3530524.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【小****库】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【小****库】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学常见【辅助线】添加方法归纳.docx)为本站上传会员【小****库】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学常见【辅助线】添加方法归纳.docx

1、1三角形中常见辅助线的添加1. 与角平分线有关的(1) 可向两边作垂线。(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。(4)

2、遇到中点,考虑中位线或等腰等边中的三线合一。3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 2四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。(1) 利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形

3、有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。和矩形有关的试题的辅助线的作法较少。3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。5. 与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的

4、.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等3圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用: 利用垂径定理 利用圆心角及其所对的弧、弦和弦心距之间的关系 利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量2. 遇到有直径时常常添加(画)直径所对的圆周角作用:利用圆周角的性质得到直角或直角三角形3. 遇到90度的圆周角时常常连结两条弦没有

5、公共点的另一端点作用:利用圆周角的性质,可得到直径4. 遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点作用:可得等腰三角形据圆周角的性质可得相等的圆周角5. 遇到有切线时常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OAAB,得到直角或直角三角形常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。6. 遇到证明某一直线是圆的切线时(1) 若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。作用:若OA=r,则l为切线(2) 若直线过圆上的某一点,则连结这点和圆心(即作半径)作用:只需证OAl,则l为切线(3) 有遇到圆上

6、或圆外一点作圆的切线7. 遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点作用:据切线长及其它性质,可得到 角、线段的等量关系 垂直关系 全等、相似三角形8. 遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段作用:利用内心的性质,可得 内心到三角形三个顶点的连线是三角形的角平分线 内心到三角形三条边的距离相等9. 遇到三角形的外接圆时连结外心和各顶点作用:外心到三角形各顶点的距离相等10. 遇到两圆外离时(解决有关两圆的外、内公切线的问题)常常作出过切点的半径、连心线、平移公切线,或平移连心线作用:利用切线的性质;利用解直角三角形的有关知识11. 遇到两圆相交时常常作公共弦、两圆连心线、连结交点和圆心等作用:利用连心线的性质、解直角三角形有关知识 利用圆内接四边形的性质 利用两圆公共的圆周的性质 垂径定理12. 遇到两圆相切时常常作连心线、公切线作用:利用连心线性质切线性质等13. 遇到三个圆两两外切时常常作每两个圆的连心线作用:可利用连心线性质14. 遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时常常添加辅助圆

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服