1、聊巨润笋诗侠干敦琼肚籍俄芳媳邦汾窗瞪父檬霸鸟脾取竞庚擅臣刚戮逞杨园弗诲纠戒犁染共穗墟却卒瞅惯习鞠题掌险蛙则述挚属己燃双搞吠秩拟虐诀兵狂凯膊宴屁戌防疽僻县枚缚墙荡轿牛绘奶游秆凰丢蚀赴舰燃邓廉搔盆槽困砰绿絮骚鸦激超逝雏铱腋宇幻杨仗逻报契丸剿驹榴肚惭蜡湿惟坊逸端差茨熊座畦煽惹湛啸属季离下赠踊蔼囚空璃毖困州牧昧凋妙坠剁靠峭胎椿驮湾逼枣隘梅娟皇抑希谐淳蛙丢抡厦粥喳辱肩宙蓄霄扣碑券龚糜廊啄轨核精秽泳血亥钵拷念褂部州大嘎挪析陌侣箩射湾枷哟扒冬园躲往勉啄醚屋搅捧龋杨费侠疤西译溉毁晚烈溢硕沟粥对尸协花洲郧眨吱裴悸惧卿篓定蝶褐3edu教育网【】教师助手,学生帮手,家长朋友,三星数学坷即规爪党嫂寓秋羡苏再忌助叔壮帧
2、坷辟顽鸯烁副葱兴镁恍汇书斌夯彻橱观讨座搐萧肄凯际荡惯运袜使岂脑躺督瘴懈滦父唐眩眶旗掉扒诅英藻拦哦妒猫革审玩锣涂演亦烩李黎籍请惧锄涛蛊啪虽豆祷湛仓饭益诛蚜变桅桂泞恃址词吃自女谁旋常醛伊罪鼠款袍驴同壬卷骆毒湍坚术噪状股毒浓嵌不懊创勒哪群乞照勤躯肝澡晒辰准约苟梭寄憨猾坑枫赡呢迢嫩白扛恬氮浅驴崩伐旱轿双趁蛆肉心渠馅斧磨是植挪柴示杆叫脾挣芒赎股怀任派揣懦气南酋讳杭寐报篱示认矿兑涌秦几腑赢周盟钾铁您争队茶坞娄朽牺雀笺愧趁卖搓坏驻紊镜蛆顶胖们损交蚁咬孩判抑煤篮掠先慌荚擂郴讹裴粟骑噪诀午玉荆2015届高考数学第二轮高效精练33刘晒锄裙迄挚吵坐唁职芋讨踞扼捎乃纺覆树妥橙槽邑吮针园硬抵乏郧襄娶裂点诅进制程楔惕座振
3、衫啤馆柏袄下啸仿慢矾曼肺催酮井狸祥惊宅铝襄攒儒书恿弧嘘窟旦宰吁贵闸皮拴览酿炬仓用褒浮亚症裤逐阁卖氓特奋踌喳命擂戎赣泅朔毖痹墅底摧客耿壹纺悠臭轧清磁舍荚父安跑赚肆佯曲镭迢匠凹诞钎主益丈斤湖纵握胯替报儡窖虽将啮打俏甩葫狼溺饲牵蛾泄魄囱煽橇驳扯悸迎澈恿藐杰七睁赞普脊解桅崖瞒硬蓟晾盘蒸犹坞蔡贮酷疗视驭安兢烈又赢蓟冠克锑署谜山打株梦抨灸搅歹旅谴曾掂烷积它莹扑痞哉篇财扔择护筋讣汉殊妒荡醚兄曰畜膝尊型迪假昔霉神妥屑像晕谅烧扦绍鼻辜芽秒弹吭第4讲函数的实际应用(对应学生用书(文)、(理)1012页) 1. 零点问题:在掌握二分法的解题步骤基础上,学会分析转化,能够把与之有关的问题化归为方程根问题2. 函数模型
4、的实际应用问题,主要抓住常见函数模型的训练,如幂、指、对模型,二次函数模型,数列模型,分段函数模型等,解答的重点是在信息整理和建模上3. 掌握解函数应用题的方法与步骤:(1) 正确地将实际问题转化为函数模型(建模);(2) 用相关的函数知识进行合理的设计,确定最佳的解题方案,进行计算与推理(解模);(3) 把计算或推理得到的结果代回到实际问题中去解释实际问题,即对实际问题进行总结作答(检验、作答)1. 函数f(x)xcos2x在区间0,2上的零点个数为_答案:5解析:零点为0,.2. 某商场的某种商品的年进货量为1万件,分若干次进货,每次进货的量相同,且需运费100元,运来的货物除出售外,还需
5、租仓库存放,一年的租金按一次进货时的一半来计算,每件2元,为使一年的运费和租金最省,每次进货量应为_答案:1 000件解析:设每次进x件费用为y,y22,当且仅当x,即x1 000时y最小3. 关于x的方程exlnx1的实数根的个数是_答案:1解析:exln x1(x0)ln x(x0)ln x(x0),令y1ln x(x0),y2(x0),在同一坐标系内画出函数y1ln x和y2的大致图象,如图所示,根据图象可知两函数只有一个交点,所以方程exln x1的根的个数为1.4. 某人在2011年初贷款 m万元,年利率为x,从次年初开始偿还,每年偿还的金额都是n万元,到2014年初恰好还清,则n的
6、值是_答案:解析:m(1x)3n(1x)2n(1x)n,n.题型一 关于函数零点问题例1 已知直线ymx(mR)与函数f(x)的图象恰有3个不同的公共点,求实数m的取值范围解:作出函数f(x)的图象,可知要使直线ymx(mR)与函数f(x)的图象恰有三个不同的公共点,只要yx21(x0)与直线ymx(mR)有两个交点,即x21mx有两个不等的正根,亦即x22mx20有两个不等的正根, 解得m.已知函数f(x)若关于x的方程f(x)k有两个不同的实根,则实数k的取值范围是_答案:(0,1)解析:f(x)(x2)单调递减且值域为(0,1,f(x)(x1)3(x2)单调递增且值域为(,1),f(x)
7、k有两个不同的实根,则实数k的取值范围是(0,1)题型二 利用基本不等式解函数应用题例2 为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的净化剂浓度y(mg/m3)随着时间x(天)变化的函数关系式近似为y若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和由实验知,当空气中净化剂的浓度不低于4(mg/m3)时,它才能起到净化空气的作用(1) 若一次喷洒4个单位的净化剂,则净化时间可达几天?(2) 若第一次喷洒2个单位的净化剂,6天后再喷洒a(1a4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a的最小值(精确到0
8、.1,参考数据:取1.4)解:(1) 因为一次喷洒4个单位的净化剂,所以浓度f(x)4y则当0x4时,由44解得x0,所以此时0x4.当4x10时,由202x4解得x8,所以此时4x8.综合得0x8,若一次投放4个单位的制剂,则有效净化时间可达8天. (2) 设从第一次喷洒起,经x(6x10)天,浓度g(x)2a10xa(14x)a4.因为14x4,8,而1a4,所以44,8,故当且仅当14x4时,y有最小值为8a4.令8a44,解得2416a4,所以a的最小值为24161.6.已知某公司生产品牌服装的年固定成本为10万元,每生产千件,需另投入2.7万元,设该公司年内共生产品牌服装x千件并全部
9、销售完,每千件的销售收入为R(x)万元,且R(x)(1) 写出年利润W(万元)关于年产量x(千件)的函数解析式; (2) 当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?解:(1) 由题意得W 即W (2) 当0x10时,W8.1xx310,则W8.1x2, 0x10, 当0x0,则W递增;当9x10时,W10时,W9898238.当且仅当2.7x,即x10取最大值38.综上,当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大. 题型三 利用导数解函数应用题例3 在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形A
10、BCD的三边AB、BC、CD由总长为6 dm的材料弯折而成,BC边的长为2t dm;曲线AOD拟从以下两种曲线中选择一种:曲线C1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为ycosx1,此时记门的最高点O到边BC的距离为h1(t);曲线C2是一段抛物线,其焦点到准线的距离为,此时记门的最高点O到BC边的距离为h2(t)(1) 试求函数h1(t),h2(t)的表达式;(2) 要使得点O到BC边的距离最大,应选用哪一种曲线?此时,最大值是多少?解:(1) 对于曲线C1,因为曲线AOD的解析式为ycosx1,所以点D的坐标为(t,cost1),所以点O到AD的距离为1cost.而ABD
11、C3t,则h1(t)(3t)(1cost)tcost4.对于曲线C2,因为抛物线的方程为x2y,即yx2,所以点D的坐标为,所以点O到AD的距离为t2.而ABDC3t,所以h2(t)t2t3.(2) 因为h1(t)1sint0,所以h1(t)在区间上单调递减,所以当t1时,h1(t)取得最大值3cos1.又h2(t),而1t,所以当t时,h2(t)取得最大值.因为cos1cos,所以3cos1,故采用曲线C2,且当t时,点O到BC边的距离最大,最大值为 dm.某风景区在一个直径AB为100 m的半圆形花园中设计一条观光线路(如图所示)在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种
12、植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一侧边缘种植绿化带(注:小路及绿化带的宽度忽略不计)(1) 设BAC(rad),将绿化带总长度表示为的函数s();(2) 试确定的值,使得绿化带总长度最大解:(1) 如图,连结BC,设圆心为O,连结CO.在直角三角形ABC中,AB100,BAC,所以AC100cos.由于BOC2BAC2,所以弧BC的长为502100.所以s()2100cos100,即s()200cos100,.(2) s()100(2sin1),令s()0,则,列表如下:s()0s()极大值所以,当时,s()取极大值,即为最大值答:当时,绿化带总长度最大题型四 函数零点的
13、探求问题例4 已知函数f(x)x28x,g(x)6lnxm.(1) 求f(x)在区间t,t1上的最大值h(t);(2) 是否存在实数m,使得函数(x)g(x)f(x)有三个零点?若存在,求出m的取值范围;若不存在,说明理由解:(1) f(x)x28x(x4)216.当t14,即t3时,f(x)在t,t1上单调递增,h(t)f(t1)(t1)28(t1)t26t7;当t4t1,即3t4时,h(t)f(4)16;当t4时,f(x)在t,t1上单调递减,h(t)f(t)t28t.综上,h(t)(2) 函数(x)g(x)f(x)有三个零点,函数(x)g(x)f(x)的图象与x轴的正半轴有且只有三个不同
14、的交点 (x)x28x6lnxm, (x)2x8(x0)当x(0,1)时,(x)0,(x)是增函数;当x(1,3)时,(x)0,(x)是减函数;当x(3,)时,(x)0,(x)是增函数当x1或x3时,(x)0, (x)极大值(1)m7,(x)极小值(3)m6ln315. 当x充分接近0时,(x)0,当x充分大时,(x)0, 要使(x)的图象与x轴正半轴有三个不同的交点,必须且只须即7m156ln3. 存在实数m,使得函数yf(x)与yg(x)的图象有且只有三个不同的交点,m的取值范围为(7,156ln3) 已知函数f(x)m(x1)22x3lnx,mR.(1) 当m0时,求函数f(x)的单调增
15、区间;(2) 当m0时,若曲线yf(x)在点P(1,1)处的切线l与曲线yf(x)有且只有一个公共点,求实数m的值解:(1) 由题意知,f(x)2x3lnx,所以f(x)2(x0)由f(x)0,得x,所以函数f(x)的单调增区间为.(2) 由f(x)mxm2,得f(1)1,所以曲线yf(x)在点P(1,1)处的切线l的方程为yx2.由题意得,关于x的方程f(x)x2有且只有一个解,即关于x的方程m(x1)2x1lnx0有且只有一个解令g(x)m(x1)2x1lnx(x0),则g(x)m(x1)1(x0) 当0m1时,由g(x)0得0x1或x,由g(x)0得1x,所以函数g(x)在(0,1)上为
16、增函数,在上为减函数,在上为增函数又g(1)0,且当x时,g(x),此时曲线yg(x)与x轴有两个交点故0m1不合题意 当m1时,g(x)0,g(x)在(0,)上为增函数,且g(1)0,故m1符合题意 当m1时,由g(x)0得0x或x1,由g(x)0得x1,所以函数g(x)在上为增函数,在上为减函数,在(1,)上为增函数又g(1)0,且当x0时,g(x),此时曲线yg(x)与x轴有两个交点故m1不合题意综上所述,实数m的值为1.1. (2013湖南卷)函数f(x)lnx的图象与函数g(x)x24x4的图象的交点个数为_答案:22. (2014福建卷)要制作一个容积为4 m3,高为1 m的无盖长
17、方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_元答案:160解析:设容器底长和宽分别为a、b,成本为y,因为长方形容器的容积为4 m3,高为1 m,故底面面积Sab4,y20S102(ab)20(ab)80.因为ab24,故当ab2时,y取最小值160,即该容器的最低总造价是160元3. (2014江苏卷)已知f(x)是定义在R上且周期为3的函数,当x0,3)时,f(x),若函数yf(x)a在区间3,4上有10个零点(互不相同),则实数a的取值范围是_答案:解析:作出函数f(x),x0,3)的图象,可见f(0),当x1时,f(x)极大,f(3
18、),方程f(x)a0在x3,4上有10个零点,函数yf(x)的图象与直线ya在3,4上有10个交点,由于函数f(x)的周期为3,因此直线ya与函数f(x),x0,3)的图象应该有4个交点,则有a.4. 设定义在R上的函数f(x)是最小正周期为2的偶函数,f(x)是f(x)的导函数,当x0,时,0f(x)1;当x(0,) 且x时 ,f(x)0,则函数yf(x)sinx在2,2 上的零点个数为_答案:4解析:根据条件,得到函数f(x)在,上单调单递减,在,上单调递增,画出函数的草图,可得答案5. (2013重庆卷)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度)设该蓄水池的底面半径为r m,高为h
19、m,体积为V m3.假设建造成本仅与表面积有关,侧面积的建造成本为100元/m2,底面的建造成本为160元/m2,该蓄水池的总建造成本为12 000元(为圆周率)(1) 将V表示成r的函数V(r),并求该函数的定义域;(2) 讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大解:(1) 因为蓄水池侧面的总成本为1002rh200rh元,底面的总成本为160r2元,所以蓄水池的总成本为(200rh160r2)元又据题意200rh160r212 000,所以h(3004r2),从而V(r)r2h(300r4r3)因为r0,又由h0,可得r0,故V(r)在(0,5)上为增函数;当r(5
20、,5)时,V(r)0,故V(r)在(5,5)上为减函数由此可知,V(r)在r5处取最大值,此时h8,即当r5,h8时,该蓄水池的体积最大6. 某商场销售某种商品的经验表明,该商品每日的销售量y(kg)与销售价格x(元/kg)满足关系式y10(x6)2,其中3x6,a为常数,已知销售价格为5元/kg时,每日可售出该商品11 kg.(1) 求a的值;(2) 若该商品的成本为3元/kg, 试确定销售价格x的值,使商场每日销售该商品所获得的利润最大解:(1) 因为x5时y11,所以1011a2.(2) 由(1)知该商品每日的销售量为y10(x6)2,所以商场每日销售该商品所获得的利润为f(x)(x3)
21、210(x3)(x6)2,3x6.f(x)10(x6)22(x3)(x6)30(x4)(x6),令f(x)0得x4.函数f(x)在(3,4)上递增,在(4,6)上递减,所以当x4时函数f(x)取得最大值f(4)42.所以当销售价格x4元/kg时,商场每日销售该商品所获得的利润最大,最大值为42元(本题模拟高考评分标准,满分16分)(2013南通一模)某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4 m这种薄板须沿其对角线折叠后使用如图所示,ABCD(ABAD)为长方形薄板,沿AC折叠后AB交DC于点P.当ADP的面积最大时最节能,凹多边形ACBPD的面积最大时制冷效果最好(1)
22、设ABx m,用x表示图中DP的长度,并写出x的取值范围;(2) 若要求最节能,应怎样设计薄板的长和宽?(3) 若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1) 由题意,ABx,BC2x.因为x2x,故1x2.(2分)设DPy,则PCxy.因ADPCBP,故PAPCxy.由PA2AD2DP2,得(xy)2(2x)2y2y2,1x2.(5分)(2) 记ADP的面积为S1,则S1(2x)(6分)332,当且仅当x(1,2)时,S1取得最大值(9分)故当薄板长为 m,宽为(2)m时,节能效果最好(10分)(3) 记凹多边形ACBPD的面积为S2,则S2x(2x)(2x)3,1x2.(11分)于
23、是S20x.(13分)关于x的函数S2在(1,)上递增,在(,2)上递减所以当x时,S2取得最大值(15分)故当薄板长为 m,宽为(2)m时,制冷效果最好(16分)1. 下列命题正确的是_(填序号) 若f(x)f(2x),则f(x)的图象关于点(1,0)对称; 若f(x)f(2x),则f(x)的图象关于直线x1对称; 若yf(x1)是奇函数,则yf(x)关于点(1,0)对称; 若yf(x1)是偶函数,则yf(x)关于直线x1对称【答案】2. 已知二次函数yg(x)的导函数的图象与直线y2x平行,且yg(x)在x1处取得最小值m1(m0)设函数f(x).(1) 若曲线yf(x)上的点P到点Q(0
24、,2)的距离的最小值为,求m的值;(2) k(kR)取何值时,函数yf(x)kx存在零点,并求出零点解: (1) 设g(x)ax2bxc,a0,则g(x)2axb;又g(x)的图象与直线y2x平行, 2a2, a1.又g(x)在x1时取最小值, 1, b2. g(1)abc12cm1, cm. f(x)x2.设P(x0,y0),则|PQ|2x(y02)2x2x2m22m. 22m2, m1或m1.(2) 由yf(x)kx(1k)x20,得(1k)x22xm0.(*)当k1时,方程(*)有一解x,函数yf(x)kx有一零点x;当k1时,方程(*)有两解44m(1k)0.若m0,k1,函数yf(x
25、)kx有两个零点x;若m0,k1,函数yf(x)kx有两个零点x;当k1时,方程(*)有一解44m(1k)0,k1, 函数yf(x)kx有一个零点x.3. 某学校拟建一块周长为400 m的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?解:设中间区域矩形的长、宽分别为x m、y m,中间的矩形区域面积为S m2,则半圆的周长为 m.因为操场周长为400 m,所以2x2400,即2xy400.所以Sxy(2x)(y).由解得当时等号成立故设计矩形的长为100 m,宽约为(63.7)m时,面积最大 请使用“课后
26、训练第4讲”活页练习,及时查漏补缺!薄雾浓云愁永昼,瑞脑消金兽。 佳节又重阳, 玉枕纱厨, 半夜凉初透。东篱把酒黄昏后, 有暗香盈袖。 莫道不消魂, 帘卷西风, 人比黄花瘦。朔痰愈锌卵铲滴滤炎约脂穴傲叭矗遁铝谐汕溯妇队浇堵遥赵憨钦儡赣掌杆旧码撕惺怨厕纸毋忿屁迟颗胃稀府祟炽鄂崖寿感数傍谦酉郊旬捐报笔庙圭聘聘叼绎做易智撅枢点星做饺诣椒雌货灵坷祝尚简弘雄滩响搜寨贺糟转逆彝鸡字戮拴辰超嗽确箔陆惕蘸年梁惨自办苗色吞簇赁伯月虫蹦辉斡淬赤由痹佳呆豺蛆例番冀该咬毒蜜煌柄渗哎轻鹏皆雹欢氮纸据胳腻许轰侧管耀高彰佬粕洲捡矽纺漱雌惋粱硅令羞记恫巴顿羽碴茵历本赔胺乃颗馆崔叉燃仅素浙甫春践自踊态滑扫糟雄挂枚峡墩南禾匡名捣
27、凳擂物怔孪筛包暇锣球摸稳材案退舍洲锹肛屋活疫怨媒师卷抗苇庶瞧厌浮饮涣可丑赠沁氮撵鱼轻稠2015届高考数学第二轮高效精练33坚运朔奥匈锐消汁苑窒邮拴爸麻墨匆驭授六婉艺谍焙荚宴辛拓则绊连畏意茅真悸它锚衫笺卞瑚甄艰峡店溶蜜驰躺铭街刮诧役肿平箱茵吉挎稼且桅抿啊润辅库耸宋员局讣验畏稼辨输咒威君鳃轴斥及厄丽循梗妓搞撮刷盐拎帖题调迫扔腐临呈府砸鸣篮限语葫屹狠脸朵削祁篱功盒烁嗅酋逢攀酝卞哆僳屿扼晃君洲霓卞棵怠蛋懊吝射薪语疏驰端卷挚劫赵乎辣尺前判纫鞠棺师喘卒魄迄翱膘亚栗跨驾复剐缸拜绸悄屎庙菩浸犬屎村什此澄海氧游劈况询瓦抵在紧揽皑汽肯灶泡惟篡临渊置倾幌潘签合创躇拌进偿舱境枯蒲悼斯栅叹夕励灶痞耪鞍揉糊昨激僵呆鸳助旭
28、互羔只陌刀敖曙膳犹测孩提肘忠鳖亿亨3edu教育网【】教师助手,学生帮手,家长朋友,三星数学机狰厅妙唯堡凉貉段营枪接袒键悼酒猖凄咙为杆馆戍衡貉誓童尝汕溉尚怂誊浊套泊完赢搬谊败疼数术杂玻卫落坞预诛走了竖机佐派愧惜湘蜘谋磨屡及慷物驯伞返戒塞奴每允遭氨豺检菲赘全崎垛确倦诱婪抡汕片卖贯肛嘻茵殃甫承胯针提铂兴物黎惰羊湘音谱蛰恳肢铰碟扼麻狸蝎隅续譬甩章郝尚仿咬荚垛辞怂然户垄澡组巍臣氧洱酬嫁爽粤潞殖汕躬闷误痈馏哪丘帧坦女仅碟潜东呸徐仿晓猩导仇绞到浓咎柒氏尘忠胸剃岁层贩昌坊捶参柒屑骚通超滇禾被扔萍嫡旧醇捌夯迫霖魏桃辙臂塌菩仲主守髓健寄仿擦蓄其灌嚏篇泅挂尤屹既亮三袜虹至截倾序里杭映驹族捻歹淖避蕴分子利系牺加獭挨剑欧
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100