1、名词解释1、异方差法:对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性2、模型设定误差:又称设定偏倚,广义上说,设定误差是由所列模型及其假定的不正确而产生。狭义上说,则只是指在建模中所产生的误差。3、怀特检验: 该实验由怀特在1980年提出,通过建立辅助回归模型的方式来判断异方差性4、序列相关性:如果模型的随机干扰项违背了独立的基本假设,称为存在序列相关性,即样本容量必须不少于模型中解释变量的数目(包含常数项)5、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时出现的,这种情形可称为虚假序列相关6、差分法:差
2、分法是一类克服序列相关性的有效方法,被广泛的采用。差分法是将原模型变换为差分模型,分为一介差分法和广义差分法。广义差分法是将原模型变换为满足OLS法的差分模型,再进行OLS估计。7、自回归模型:解释变量仅包含X的当期值与被解释变量Y的一个或多个滞后值的模型8、广义最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例这就是原模型式的广义最小二乘估计量,是无偏的、有效地估计量。9、DW检验:D-W检验是杜宾(J.Durbin)和瓦森(G.S. Watson)于1951年提出的一种检验序列自相关的方法,该方法的假定条件是:(1)解释变量X非随机;(2)随机误差项mi为一阶
3、自回归形式: mi=mri-1+ei(3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=b0+b1X1i+bkXki+gYi-1+mi(4)回归含有截距项10、相关系数:度量变量之间相关程度的一个系数,一般用表示, 越接近于1,相关程度越强,越接近于0,相关程度越弱。11、多重判定系数: 使模型中每个解释变量分别以其余解释变量为解释变量进行回归计算,并计算相应的拟合优度,也成为判定系数。(在多元线性回归模型中,回归平方和与总离差平方和的比值,也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数,仍用R2表示。)12、调整后的决定系数:
4、又称修正后的决定系数,是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的13、虚拟变量:为了能够在模型中反映某些因素的影响,并能提高模型的精度,需要将某些变量“量化”,它们的构造只取“0”或“1”的变量称为虚拟变量14、工具变量:是指在模型中的随机解释变量高度相关,与随机误差项不相关的变量。在模型估计过程中被作为工具使用,以替代与随机干扰项相关的随机解释变量15、工具变量法:用工具变量替代模型中与随机误差项相关的随机解释变量的方法16、虚拟变量模型: 同时含有一般解释变量与模拟变量的模型称为虚拟变量模型17、受约束回归:在实际经济活动中,常常需要根据经济理论对模型中变量的参数施加一
5、定的约束条件,对模型参数施加约束条件后进行回归21、虚拟因变量模型:(1)虚拟变量在模型中可以作解释变量,也可以作因变量。(2)引入虚拟变量后,回归方程中同时含有一般解释变量和虚拟变量,称这种变量结构的模型为虚拟变量模型或协方差分析模型。虚拟变量作因变量的模型又称抉择模型。22、滞后变量:是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量,前期的外生变量称为滞后外生变量。通常把过去时期的,具有滞后作用的变量叫做滞后变量(Lagged Variable),含有滞后变量的模型称为滞后变量模型。 23、滞后效应:因变量受到自身或另一解释变量的前几期值影响的现象称为滞后效应24、效用函
6、数:表示消费者在消费中所获得的效用与所消费的商品组合之间数量关系的函数。它被用以衡量消费者从消费既定的商品组合中所获得满足的程度。运用无差异曲线只能分析两种商品的组合,而运用效用函数则能分析更多种商品的组合。其表达式是:U=U(x, y, z, )式中 x,y,z分别代表消费者所拥有或消费的各种商品的数量。25、平稳时间序列的条件:P277 模型的平稳条件 p阶自回归系数多项式的根都在单位圆外,即模型的平稳性完全由其自回归部分的平稳性决定。26、被解释变量预测值:对于一元线性回归模型,如果给定样本以外的解释变量的观测值Xo,可以得到被解释变量的预测值0,可以此作为其条件均值E(Y|X=X0)或
7、个值Y0的一个近似估计27、固定效应模型:如果把“个体效应”当作不随时间改变的固定因素相应模型称为“固定效应”模型。简答题1、 为什么说计量经济学是一门经济学科?它在经济学科中的地位和作用?从计量经济学的定义看,它是定量化的经济学;其次,从计量经济学在西方国家经济学科中居于最重要的地位看,也是如此,尤其是从诺贝尔经济学奖设立之日起,已有多人因直接或间接对计量经济学的创立和发展作出贡献而获得诺贝尔经济学奖;计量经济学与数理统计学有严格的区别,它仅限于经济领域;从建立与应用计量经济学模型的全过程看,不论是理论模型的设定还是样本数据的收集,都必须以对经济理论,对所研究的经济现象有透彻的认识为基础.综
8、上所述,计量经济学确实是一门经济学科.2、 建立计量经济学模型的基本思想计量经济学方法,就是定量分析经济现象中各因素之间的因果关系.所以,第一步,要根据经济理论分析所研究的经济现象,找出经济现象之间的因果关系及相互间的联系,把问题作为被解释变量,把影响问题的主要因素作为解释变量,把非主要因素归入随机项;第二步,要按照它们之间的行为关系选择适当的数学形式描述这些变量之间的关系,一般是用一组数学上彼此独立,互不矛盾,完整有解的方程组表示.在建立理论模型的时,要求理论模型在参数估计,模型检验的过程中不断得到修正,以便得到一个较好的,能够解释过去的,反映客观经济规律的数学模型.此外,还可以通过散电图或
9、模拟的方法,选择一个拟合效果较好的数学模型.3、 计量经济模型应用领域?各自的原理?计量经济学模型主要有以下几个方面的用途:(1)结构分析,其原理是弹性分析、乘数分析与比较分析(2)经济预测,其原理是模拟历史,从已经发生的经济活动中找出变化规律(3)政策评价,是对不同政策执行情况的“模拟仿真”(4)检验与发展经济理论,其原理是如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据4、 试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同 时间序列数据的例子如:改革开放以来25年中的GDP,居民人均消费支出,人均可支配收入,零售物价指数,固定资产投资等;横截
10、面数据的例子如:2003年各省的GDP,该年各工业部门的销售额,该年不同收入的城镇居民消费支出,该年不同城镇居民的可支配收入,该年各省的固定资产投资等.这两类数据都是反映经济规律的经济现象的数量信息,不同点:时间序列数据是含义,口径相同的同一指标按时间先后排列的统计数据列;而横截面数据是一批发生在同一时间截面上不同统计单元的相同统计指标组成的数据列.5、什么是滞后现象?产生原因?解释变量和被解释变量的因果联系可能不在同时发生,在这一过程中通常有时间滞后,解释变量需要通过一段时间才能完全作用与被解释变量。由于经济活动的连续性,被解释变量的当前变化往往受到自身过去取值水平的影响。被解释变量受自身或
11、其它经济变量前期水平的影响称为滞后现象。原因:A心理因素:人们的心理定势,行为方式滞后于经济形势的变化,如中彩票的人不可能很快改变其生活方式。B技术原因:如当年的产出在某种程度上依赖于过去若干期内投资形成的固定资产。C制度原因:如定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性。 6、 几种典型的消费函数形式?(1) 绝对收入假设消费函数模型凯恩斯认为,消费是由收入唯一决定的,消费与收入之间存在着稳定的函数关系。 t=1,2,T 其中C表示消费额,Y表示收入,为待估参数。(2) 相对收入假设消费函数模型一、“示范性”假设消费函数模型绝对收入假设消费函数模型认为消费者的消费行为是独立的
12、,不受周围环境的响。这种消费行为假设是不符合客观实际的。杜伊森贝里(Duesenberry)认为,消费者的消费行为不仅受自身收入的影响,也受周围人的消费水平的影响。 其中为该消费者所处的群体的平均收入水平。从式子可以看出,当,一定时,对于较低的,其较高。这就是“示范性”的作用。式子的计量形态可以表示为 i=1,2,n 其中待估计参数01,反映个人的边际消费倾向,01,反应群体平均收入水平对个体消费的影响。二、“不可逆性”假设消费函数模型杜伊森贝里认为,消费者的消费支出水平不仅受到当前收入的影响,也受自己历史上曾经实现的消费水平的影响。 其中为该消费者曾经达到的最高收入水平。从式子可以看出,当,
13、一定时,对于较低的,其中较高。这就是“不可逆性”的作用。式子的计量形态可表示为 t=1,2,T 其中待估参数 01,当反应当前的边际消费倾向;01,反应曾经达到的最高收入水平对当前消费的影响。(3) 生命周期假设消费函数模型 莫迪利亚尼(Modigliani),布朗姆帕格(Brumberg)和安东(Ando)于1954年提出,消费者现期消费不仅与现期收入有关,而且与消费者以后各期收入的期望值、开始时的资产数量和年龄有关。一般近似的用下列函数描述生命周期假设消费函数模型: t=1,2,T 其中为时刻t的资产存量,待估参数01,反应当前的边际消费倾向,010时(此时0.9),认为模型存在较严重的多
14、重共线性.五,修正的Frish判别法该方法不仅可以对多重共线性进行判别,同时也是处理多重共线性问题的一种有效方法.其步骤为:(1)用被解释变量分别对每个解释变量进行线性回归,根据经济理论和统计检验从中选择一个最合适的回归模型作为基本回归模型,通常选取决定系数最大的回归模型.(2)在基本回归模型中逐个增加其他解释变量,重新进行线性回归,如果新增加的这个解释变量提高了回归模型的决定系数,并且回归模型中的其他参数统计上仍然显著,就在模型中保留该解释变量;如果新增加的解释变量没有显著提高回归模型的拟合优度,则不在模型中保留该解释变量;如果新增加的解释变量提高了回归模型的决定系数,并且回归模型中某些参数
15、的数值或符号等受到显著的影响,说明模型中存在多重共线性,对该解释变量同与之相关的其他解释变量进行比较,在模型中保留对被解释变量影响较大的,剔除影响较小的.9、 异方差一 、参数估计量非有效二、变量的显著性检验失去意义三、模型的预测失效异方差的检验:一、图示检验法二、帕克(park)检验与戈里瑟检验三、G-Q(Goldfeld-Quandt)检验四、怀特(white)检验10、 随机解释变量p14512、随机误差项和残差项的区别与联系?区别:残差是被解释变量实际值和样本回归的差值;随机干扰项是被解释变量实际值和总体回归的差值.前者近似地可以看成是后者的估计和代理.随机误差项 ui = Yi-E(
16、Y/Xi).当把总体回归函数表示成 Yi=Yi尖+ei 时,其中的ei 就是残差。它是用 Yi尖 估计Yi 时带来的误差 ,是对随机误差项 ui的估计。(所有的i都是下标Yi尖是Yi的估计值)1)随机误差项反应除自变量外其他各种微小因素对因变量的影响,它是与未知的总体回归线之间的纵向距离,是不可直接观测的。残差是与按照回归方程计算的的差额,它是与样本回归线之间的纵向距离,当根据样本观测值拟合出样本回归线之后,可以计算的具体数值。利用残差可以对随意误差项的方差进行估计。2)残差与误差,这两个概念在某种程度上具有很大的相似性,都是衡量不存定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以
17、衡量测量的准确性,误差越大则表示测量越不准确随机误差与观测者、测量工具、被观测物体的性质有关,只能尽量减少却不能避免。残差与预测有关残差大小可以衡量预测的准确性,残差越大表示预测越不准确。残差与数据本身的分布特征,回归方程的选择有关。13、R2检验与F检验的区别与联系T检验是检验单个参数的显著性,而F检验是检验整体参数的显著性。通过T检验说明被检验的参数是显著有效的,通过F检验,说明整体参数中至少有一个是显著的,但不一定是都显著。F检验是检验解释变量与被解释变量总体的线性关系(对线性模型而言),T检验是检验单个解释变量对被解释变量的解释能力,如果不能通过T检验的话,说明该解释变量对被解释变量的
18、解释作用不大,应该在模型中剔除。14、回归分析与相关分析的区别和联系联系:(1)理论和方法具有一致性;(2)无相关就无回归,相关程度越高,回归越好;(3)相关系数和回归系数方向一致,可以互相推算。(4)相关分析是回归分析的前提和基础;回归分析是相关分析的深入和继续。区别:(1)回归分析中必须区分自变量和因变量,而相关分析中两个变量是完全对等的;回归分析强调因果关系,相关分析不关心因果关系(2)相关分析中x、y均为随机变量,回归分析中只有y为随机变量;(3)相关分析测定相关程度和方向,回归分析用回归模型进行预测和控制15、一元线性回归的最小二乘法的基本原理及步骤?16、在建立计量模型时,什么时候
19、,为什么要引入虚拟变量?在现实经济生活中,除了诸如:利润、成本、收入、价格等具有数量特征、影响某个经济问题的变量外,还有一类变量,如:季节、民族、自然灾害、战争、政府制定的某项经济政策等也会影响某些经济问题且可能是重要的影响因素,如:讨论改革前后的经济发展的对比,讨论像空调、冷饮等季节性产品的销售,讨论女性化妆品的销售等问题时,不可避免的要考虑后一类变量。这后一类变量所反映的并不是数量而是某种性质或属性,我们前面所讨论的回归模型是一种定量模型,所以在引入这类反映性质或属性的变量时需要先将其定量化。在计量经济学中,我们把这些反映性质或属性的变量叫“虚拟变量”。规定具备某种属性时把虚拟变量赋值为“
20、1”,反之为“0”。(在现实生活中,影响经济问题的因素除具有数量特征的变量外,还有一类变量,这类变量所反映的并不是数量而是现象的某些属性或特征,即它们反映的是现象的质的特征。这些因素还很可能是重要的影响因素,这时就需要在模型中引入这类变量。引入的方式就是以虚拟变量的形式引入。)17、举例说明虚拟变量在模型中的作用?答:以调查某地区居民性别与收入之间的关系为例(设解释变量中只含有虚拟变量),我们可以用模型表示:其中 代表收入, 为虚拟变量,可以看出, 代表女性的收入, 代表男性与女性收入之间的差额,从 式很容易得出:检验假设 ,就是检验男女的平均收入之间是否有差额。若: 成立,说明收入与性别没有
21、明显关系。若 不成立,说明收入与性别有明显关系。18、模型引入虚拟变量的作用(1)可以描述和测量定性因素的影响(2)能够正确反映经济变量之间的关系,提高模型的精度(3)便于处理异常数据19、虚拟变量引入的原则(1)如果一个定性因素有m方面的特征,则在模型中引入m-1个模拟变量;(2)如果模型中有个m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量(3)虚拟变量取值应从分析问题的目的出发予以界定(4)虚拟变量在单一方程中可以作为解释变量也可以作为被解释变量20、虚拟变量引入的方式及每种方式的作用
22、?(1)加法方式:其作用是改变了模型的截距水平(2)乘法方式:其作用在于两个模型间的比较、因素间的交互影响分析和提高模型的描述精度(3)一般方式:即影响模型的截距有影响模型的斜率21、模型设定误差的类型?(1)模型中添加了无关的解释变量;(2)模型中遗漏了重要的解释变量;(3)模型中试用了不恰当的形式22、工具变量选择时必须满足哪些条件?选择工具变量必须满足一下两个条件:(1)工具变量与模型中的随机解释变量高度相关;(2)工具变量与模型的随机误差项不相关。23、滞后变量模型的类型并写出形式滞后变量模型包括两种类型:自回归模型和分布滞后模型。自回归模型时模型的解释变量中包含滞后被解释变量,基本形
23、式为:分布滞后模型是指模型中不仅包含解释变量的当期值,还包括解释变量的滞后值,基本形式为:24、模型设定误差产生的原因又称设定偏倚,广义上说,设定误差是由所列模型及其假定的不正确而产生。狭义上说,则只是指在建模中所产生的误差。这些误差主要有下列五种情况。 1. 省略有关变量的情况 2. 列入无关变量的情况 3. 忽视变量质变的情况 4. 回归模型数学形式不正确的情况 5. 扰动项不正确设定的情况 综合题1、某样本的容量为20(包含20个观察值),采用Yt=B1+B2X1t+ B3X2t+t 作回归,根据回归结果已知:ESS=602.2,TSS=678.6,求:1、RSS;2、ESS与RSS的自
24、由度;3、求F值4、检验零假设:B2= B3=0。(5分)(提示: ESS是分子自由度,RSS是分母自由度)1、RSS=TSSESS=76.42、ESS自由度=2 RSS自由度=173、F=67.2F临界=3.59,拒绝零假设。2、以样本容量为30的样本为分析对象,做二元线性回归,试完成下列表格。1-3题只需将答案填在空格即可,4-5题需写出简单计算过程。方差来源平方和(SS)自由度(d.f)ESS103.50(1)RSS(2)TSS110.00(3)判定系数R2(4)联合假设检验统计量F值(5)自由度分别为2;27;29。R平方等于0.94;F=214。Ros提高50点,薪水提高1.2%T=
25、0.44,小于临界值,接受零假设,因此,不包括ros变量(H0: = 0. H1: 0. 按比例影响是0.00024(50)=0.012。要获取率的作用,我们乘以100:1.2。因此,50点其他条件不变时ros的增加预计将仅增长1.2的工资。实际上,这是一个如此大的变化的ros影响非常小。10的临界值的单尾检验,使用df= ,使用的是取自表G.2为1.282。对ros统计值0.00024/0.000540.44,远低于临界值。因此,我们无法拒绝在10显着水平的零假设。)4、某人试图建立我国煤炭行业生产方程,以煤炭产量为被解释变量,经过理论和经验分析,确定以固定资产原值、职工人数和电力消耗量变量
26、作为解释变量,变量的选择是正确的。于是建立了如下形式的理论模型: 煤炭产量=固定资产原值+职工人数+电力消耗量+选择2000年全国60个大型国有煤炭企业的数据为样本观测值;固定资产原值用资产形成年当年价计算的价值量,其它采用实物量单位;采用OLS方法估计参数。指出该计量经济学问题中可能存在的主要错误,并简单说明理由。 模型关系错误。直接线性模型表示投入要素之间完全可以替代,与实际生产活动不符。 估计方法错误。该问题存在明显的序列相关性,不能采用OLS方法估计。 样本选择违反一致性。行业生产方程不能选择企业作为样本。 样本数据违反可比性。固定资产原值用资产形成年当年价计算的价值量,不具备可比性。
27、 变量间可能不存在长期均衡关系。变量中有流量和存量,可能存在1个高阶单整的序列。应该首先进行单位根检验和协整检验。5、投资函数模型 为一完备的联立方程计量经济模型中的一个方程,模型系统包含的内生变量为C(居民消费总额)、I(投资总额)和Y(国内生产总值),先决变量为(政府消费)、和。样本容量为。 可否用狭义的工具变量法估计该方程?为什么? 如果采用2SLS估计该方程,分别写出2SLS估计量和将它作为一种工具变量方法的估计量的矩阵表达式; 如果采用GMM方法估计该投资函数模型,写出一组等于0的矩条件。解: 不能用狭义的工具变量法估计该方程。因为该结构方程是过度识别的。 如果采用2SLS估计该方程
28、,可以将2SLS估计看作为一种工具变量方法。估计量的矩阵表达式分别为:前者为2SLS估计,后者为其等价的工具变量估计。 如果采用GMM方法估计该投资函数模型,用模型系统的所有先决变量作为工具变量。可以写出如下一组等于0的矩条件: 6、建立城镇居民食品类需求函数模型如下: 其中V为人均购买食品支出额、Y为人均收入、为食品类价格、为其它商品类价格。 指出参数估计量的经济意义是否合理,为什么? 为什么经常采用交叉估计方法估计需求函数模型? (1)对于以购买食品支出额位被解释变量的需求函数模型,即参数估计模型的经济意义分别为人均收入、食品类价格、其他商品类价格的需求弹性;由于食品为必须品,V为人均购买
29、食品支出额,所以,应该在0与1之间,应该在0与1之间,在0左右,二者之和为1左右。所以,该模型估计结果中的估计量缺少合理的经济解释。(2) 由于该模型中包含长期弹性与短期弹性,需要分别采用截面数据和时序数据进行估计,所以经常采用交叉估计方法估计需求函数模型。7、选择两要素一级CES生产函数的近似形式建立中国电力行业的生产函数模型: 其中Y为发电量,K、L分别为投入的资本与劳动数量,t为时间变量。 指出参数、m的经济含义和数值范围; 指出模型对要素替代弹性的假设,并指出它与C-D生产函数、VES生产函数在要素替代弹性假设上的区别; 指出模型对技术进步的假设,并指出它与下列生产函数模型 在技术进步
30、假设上的区别;(1) 参数Y为技术进步速度,一般为接近0的整数;为替代参数,在(-1,)范围内;m为规模报酬参数,在1附近。(2) 该模型对要素替代弹性的假设为:随着研究对象、样本区间而变化,但是不随着样本点而变化。而C-D生产函数的要素替代弹性始终未1,不随着研究对象、样本区间二变化,当然也不随着样本点而变化;VES生产函数的要素替代弹性除了随着研究对象、样本区间而变化,还随着样本点而变化。(3) 该模型对技术进步的假设为希克斯中性技术进步;而生产函数模型的技术进步假设为中性技术进步,包括3种中性技术进步。8、试指出在目前建立中国宏观计量经济模型时,下列内生变量应由哪些变量来解释,简单说明理
31、由,并拟定关于每个解释变量的待估参数的正负号。 轻工业增加值 衣着类商品价格指数 货币发行量 农业生产资料进口额 (1)轻工业增加值应该由反映需求的变量解释。包括居民收入(反映居民对轻工业的消费需求,参数符号为正)、国际市场轻工业品交易总额(反映国际市场对轻工业的需求,参数符号为正)等。(2) 衣着类商品价格指数应该由反映需求和反映成本的两类变量解释。主要包括居民收入(反映居民对衣着类商品的消费需求,参数符号为正)、国际市场衣着类商品交易总额(反映国际市场对衣着类商品的需求,参数符号为正)、棉花的收购价格指数(反映成本对价格的影响,参数符号为正)等。(3) 货币发行量应该由社会商品零售总额(反映经济总量对货币的需求,参数符号为正)、价格指数(反映价格对货币需求的影响,参数符号为正)等解释变量。(4) 农业生产资料生产部门增加值(反映国内供给,参数符号为正)、国内农业生产资料生产部门增加值(反映国内供给,参数符号为负)、国际市场价格(参数符号为负)、出口额(反映外汇支付能力,参数符号为正)等解释变量。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100