ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:82.97KB ,
资源ID:3332340      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3332340.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(金融计量经济学第三次作业.docx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

金融计量经济学第三次作业.docx

1、金融计量经济学第三次作业陈实011、 解答:在模型两边同时除以inc可得,在这个式子中,误差项 的方差为 ,即为同方差的。2、 解答:如果模型中缺少了一个重要的自变量,WLS不一定优于OLS。因为WLS所解决的问题是异方差的问题。而模型中缺少了一个重要的自变量则是模型设定不当的问题,WLS并不能解决这一问题,所以也就不一定由于OLS。3、 解答:(1)同方差假设给出的标准差是在假设干扰项方差相同的情况下给出的,异方差稳健的标准差是在假设干扰项的方差不同的情况下给出的。在这个例子中异方差稳健的标准差相比于同方差假设的标准差中,只有age前的系数的标准差下降了20%,其余的标准差变化都在4%以内。

2、所以,在这个例子中,大多数的异方差稳健的标准差与同方差假设的标准差相近。(2)在其他条件不变时,增加4年的教育退投资股票的概率的影响是增大: 的概率。(3) ,所以当这个值小于0时,age大于38.46,所以在39岁(含)以后,投资股票的概率会随年龄的增加而下降。(4)虚拟变量city的系数0.101代表的是,在其他条件相同的情况下,居住在城市的人比不居住在城市的人投资股票的概率,在期望的情况下大10.1%.(5)这个人投资股票的概率的期望值为 这个概率大于1,在现实中是不可能的。这个概率所反映出的就是该个人投资股票的概率极大,几乎肯定会投资股票。4、 解答:在5%的显著性水平下,n=269的

3、单边t检验的临界值大约为1.645(1) 则在5%的显著性水平下,crsgpa的系数是显著的,无论使用的是哪种标准差。 则在5%的显著性水平下,cumgpa的系数是显著的,无论使用的是哪种标准差。 则在5%的显著性水平下,tothrs的系数是不显著的,无论使用的是那种标准差。(2) 则在5%的显著性水平下,同方差假设下season的系数不显著,异方差稳健的条件下season的系数显著。5、 解答:我们并不能直接通过R方说明前一模型是不合适的。首先,我们应当用调整R方来比较一下两个模型。前一个模型的调整R方为;后一个模型的调整R方为 .故而,后一个模型的调整R方更好,对数据的解释也更好,所以我们

4、更倾向于使用后一个模型而不是前一个。这里,我们在一定程度上说明了前一个模型是不合适的。而另外,我们可以利用RESET方法来检验一下模型中是否有平方项或交叉项的显著影响,从而决定前一个模型是不是合适。6、 解答:如果出现了异方差。(1)OLS估计是不一致的;错误!因为在假设1至4下,便是一致的,不需要同方差假设。(2)通常的F统计量不再服从F分布;正确!只有在假设1至6都成立的情况下,通常的F统计量才能服从F分布,这里假设5不满足,所以正确。(3)OLS估计不再是BLUE的;正确!只有在假设1至5(GM假设)成立的情况下,OLS才是BLUE,这里假设5不满足。(4)干扰项不服从正态分布;错误!干

5、扰项是否服从正态分布与是否异方差无关。7、 解答:经典的误差假设是:因变量的误差 与每一个自变量都相互独立。我认为这一经典假设在这一问题中并不成立。在高收入人群中,储蓄率一般比较不固定,往往由于高收入人群的消费比较高,使得储蓄率较低(用不着存很大的比重)。但是在填报数据的时候,由于高收入人群往往并不很清楚自己的储蓄率,而在印象中会报告自己的储蓄率,从而导致了因变量出速率的误差在收入较高的时候,往往会出现较大正偏差。所以这一经典假设不成立。8、 解答:没有接受调查的投资者有内生性的问题。因为收益不好的投资者,或者出现亏损的投资者,往往更加不愿意接受调查,或者公布自己的收益状况。这就导致了调查的样

6、本偏向有正收益和高收益的投资者。样本不在随机,而且选择的尺度与因变量有关,所以存在内生性问题。9、 解答:分别对sex=0和sex=1进行分析。Sex=0,男性,共22组数据,回归结果如下: Sex=1,女性,共10组数据,回归结果如下:这样的话,F检验为:这在5%的显著性水平下不显著,故而没有充分证据证明.10、 解答:首先,我们将数据按照的顺序排列,选择了最低的20组和最高的20组数据(中间舍弃了10组数据)。对低20组数据回归得到的结果为: 对高20组数据回归得到的结果为: 这样的话, 所以,拒绝零假设,也即数据存在异方差。这里,我们用WLS模型来处理该数据。原模型回归得到:接着,对进行

7、回归:然后用,再用可以得到WLS的权重.在原模型的等式两边同时乘以权重的开方,然后回归,得到:通过WLS调整后的结果如上式所示。11、 解答:先对原模型进行回归,得到 从方程中,我们可以得到拟合值、残差。接着,我们进行Breush-Pangan检验: F统计量的自由度为(3,46),从F的7.95的值中,我们可以看出,在1%的显著性水平下,我们拒绝残差的平方与自变量间都没有线性关系的零假设,也就是Breush-Pangan检验结果为存在异方差。接着,我们进行White检验: F统计量的自由度为(2,47),从F的11.86的值中,我们可以看出,在1%的显著性水平下,我们拒绝残差的平方与拟合值和

8、拟合值的平方间都没有线性关系的零假设,也就是Breush-Pangan检验结果为存在异方差。12、 解答:为了使得结果比较明显,我们将sales的数据进行了除以100的处理,即以亿美元为单位。包含所有公司的回归结果为: 题中要求我们去除超过400亿美元的数据。我们这里并没有超过400亿美元的数据,最大的为390亿。所以我们去除了5个sales超过40亿美元的数据进行了回归。结果如下:可见,最后的结果差距相当大,sales的二次函数直接改变了抛物线的开口方向,而profmarg的系数变化也超过了30%,所以这些数据对结果的影响是非常大的。由于第二个模型中自动排除了销售额较高的公司,模型的选择上就

9、无法做到随机。而销售额较高的公司往往对整个结果的回归影响较大,所以导致了这样的结果。13、 解答:用ln(asset), ln(income), eachearn, Herfindahl_5对ln(threeceo)进行回归,即用资产、营业收入、每股收益、前5大股东分散指数对CEO年薪进行回归。结果如下:接着,我们进行Breush-Pangan检验: 我们发现,F值是较高的,也就是说数据存在异方差。原模型中,有54个数据的标准化残差超过了2,超过了5%,但是不到6%,说明在可控范围之内。去掉这54个异常值,我们可以得到的结果为通过与初始的结果的比较,我们发现,这些异常值对于ln(asset)和eachearn前的系数都造成了超过10%的影响,而对ln(income)系数的影响更是超过了80%.处理过后的结果已经在上面呈现。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服