ImageVerifierCode 换一换
格式:PDF , 页数:14 ,大小:409.32KB ,
资源ID:3248233      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3248233.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(苏科版七下数学知识点总结.pdf)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

苏科版七下数学知识点总结.pdf

1、第七章 平面图形的认识(二)一、知识点:1、“三线八角”如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。如何由角找线:组成角的三条线中的公共直线就是截线。2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。简述:平行于同一条直线的两条直线平行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。简述:垂直于同一条直线的两条直线平行。3、平行线的判定和性质:判定定理 性质定理 条件 结论 条件 结论 同位角相等 两直线平行 两直线平行 同位角相等 内错角相等 两直线平行 两直线平行 内错角相等 同旁内角互补 两直线平行 两直线平行

2、 同旁内角互补 4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。若三角形的三边分别为 a、b、c,则bacba 6、三角形中的主要线段:三角形的高、角平分线、中线。注意:三角形的高、角平分线、中线都是线段。高、角平分线、中线的应用。7、三角形的内角和:三角形的 3 个内角的和等于 180;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。8、多边形的内角和:n 边形的内角和等于(n-2)180

3、;任意多边形的外角和等于 360。第八章 幂的运算 幂(power)指乘方运算的结果。an指将 a自乘 n 次(n个 a相乘)。把 an看作乘方的结果,叫做 a的 n 次幂。对于任意底数 a,b,当,为正整数时,有:a an=am+n (同底数幂相乘,底数不变,指数相加)aan=am-n (同底数幂相除,底数不变,指数相减)(a)n=amn (幂的乘方,底数不变,指数相乘)(ab)n=anan (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a0)(任何不等于 0 的数的 0 次幂等于 1)a-n=1/an(a 0)(任何不等于 0 的数的-n次幂等于这个数的 n 次幂的倒数)科

4、学记数法:把一个绝对值大于10(或者小于1)的整数记为a10n的形式(其中1|a|10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 na 中,a 叫做底数,n 叫做指数。2.乘方的性质:(1)负数的奇次幂是负数,负数的偶次幂的正数。(2)正数的任何次幂都是正数,0 的任何正整数次幂都是 0。第九章 整式的乘法与因式分解 一、整式乘除法 单项式乘以单项式:把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5bc2=(ab)(c5c2)=abc5+2=abc7 注:运算顺序先

5、乘方,后乘除,最后加减 单项式除以单项式:把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式。单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc 注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn 乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2

6、-b2 完全平方公式:两数和 或差 的平方,等于它们的平方和,加 或减 它们积的 2 倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.因式分解方法:1、提公因式法.关键:找出公因式 公因式三部分:系数(数字)一各项系数最大公约数;字母-各项含有的相同字母;指数-相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项 注意:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的

7、系数是负的,一般要提出“”号,使括号内的第一项的系数是正的 2、公式法:a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积 a、b 可以是数也可是式子a22ab+b2=(ab)2 完全平方两个数平方和加上或减去这两个数的积的2 倍,等于这两个数的和 或差 的平方.x3-y3=(x-y)(x2+xy+y2)立方差公式 3、十字相乘:(x+a)(x+b)=x2+(a+b)x+ab 因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止 弄清因式分解与整式乘法的内

8、在的关系:互逆变形;因式分解是把和差化为积的形式,而整式乘法是把积化为和差 添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证 第十章 二元一次方程组 1.含有两个未知数,并且所含未知数的项的次数都是 1 的方程叫做二元一次方程。2.含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。3.二元一次方程组中两个方程的公共解叫做二元一次方程组的解。4.代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。5.加减消元

9、法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.6.二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.第十一章 一

10、元一次不等式 一元一次不等式 重点:不等式的性质和一元一次不等式的解法。难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。知识点一:不等式的概念 1.不等式:用“”(或“”),“”(或“”)等不等号表示大小关系的式子,叫做不等式.用“”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:“”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;(2)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。2不等式的解:能使不等式成立的未知数的值,叫做不等式的解。要点诠释:由不等式的解的定义可

11、以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。3不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式 x41 的解集是 x5.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都

12、能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。知识点二:不等式的基本性质 基本性质 1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。符号语言表示为:如果ba,那么cbcacbca,。基本性质 2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。符号语言表示为:如果ba,并且0c,那么bcac(或cbca)。基本性质 3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。符号语言表示为:如果ba,并且0c,那么bcac(或cbca)。要点诠释:(1)不等式的基本性质 1 的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性

13、质 1 中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“”,那么变化后仍是“”;如果原来是“”,那么变化后仍是“”;“不等号的方向改变”指的是如果原来是“”,那么变化后将成为“”;如果原来是“”,那么变化后将成为“”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质 3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。知识点三:一元一次不等式的概念 只含有一个未知数,且含未知数的式子都是整式,未知数的次数是 1,系数不为 0.这样的不等式,叫做一元一次不等式。要点诠释:(1

14、)一元一次不等式的概念可以从以下几方面理解:左右两边都是整式(单项式或多项式);含有一个未知数;未知数的最高次数为 1。(2)一元一次不等式和一元一次方程可以对比理解。相同点:二者都是只含有一个未知数,未知数的最高次数都是 1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“”、“”、“”、“”连接),一元一次方程表示相等关系(用“”连接)。知识点四:一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5

15、)系数化为 1.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用(2)解不等式应注意:去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;项时不要忘记变号;括号时,若括号前面是负号,括号里的每一项都要变号;在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。2.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。要点诠释:在用数轴表示不等式的解集时,要确定边界和方向:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左 规律方

16、法指导(包括对本部分主要题型、思想、方法的总结)1、不等式的基本性质是解不等式的主要依据。(性质 2、3 要倍加小心)2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为ax 或ax的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为 1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为 1 时,在不等式两边同乘以(或除以)同一个非零数时,

17、如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。解一元一次不等式的一般步骤及注意事项 变形名称 具体做法 注意事项 去分母 在不等式两边同乘以分母的最小公倍数(1)不含分母的项不能漏乘(2)注意分数线有括号作用,去掉分母后,如分子是多项式,要加括号(3)不等式两边同乘以的数是个负数,不等号方向改变。去括号 根据题意,由内而外或由外而内去括号均可(1)运用分配律去括号时,不要漏乘括号内的项(2)如果括号前是“”号,去括号时,括号内的各项要变号 移项 把含未知数的项都移到不等式的一边(通常是左边),不含未知数的项移到不等式的另一边 移项(过桥)变号 合并同类项 把不等式两边的同类项分别

18、合并,把不等式化为bax 或)0(abax的形式 合并同类项只是将同类项的系数相加,字母及字母的指数不变。系数化 1 在不等式两边同除以未知数的系数a,若bax且0a,则不等式的解集为abx;若bax且0a,则不等式的解集为abx;若bax且0a,则不等式的解集为abx;若bax且0a,则不等式的解集为abx;(1)分子、分母不能颠倒 (2)不等号改不改变由系数 的正负性决定。(3)计算顺序:先算数值后定符号 4、将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实。5、用一元一次不等式解答实际问题,关键在于寻找问题中

19、的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。6、常见不等式的基本语言的意义:(1)0 x,则x是正数;(2)0 x,则x是负数;(3)0 x,则x是非正数;(4)0 x,则x是非负数;(5)0yx,则x大于y;(6)0yx,则x小于y;(7)yx,则x不小于y;(8)yx,则x不大于y;(9)0 xy或0yx,则x,y同号;(10)0 xy或0yx,则x,y异号;(11)x,y都是正数,若1yx,则yx;若1yx,则yx;(12)x,y都是负数,若1yx,则yx;若1yx,则yx 第十二章 证明 教学目标:1.掌握定义、命题、定理、逆命题、互逆命题等概念,知道一个命题是真命

20、 题,它的逆命题不一定是真命题。2.基本事实是其真实性不加证明的真命题,弄清真命题与定理的区别。3.会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。重点:定义、命题、定理、逆命题、互逆命题等概念的理解与运用 难点:会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。内容:1.以基本事实:“同位角相等,两直线平行”证明:(1)“内错角相等,两直线平行”、“同旁内角互补,两直线平行”、“平行于同一条直线的两条直线平行”2.基本事实:“过直线外一点,有且只有一条直线与这条直线平行”“两直线平行,同位角相等”证明:(1)两直线相平行,内错角相等(2)两直线相平行,同旁内角互补(3)三角形内角和定理”(4)直角三角形的两个锐角互余(5)有两个锐角互余的三角形是直角三角形(6)三角形的外角等于与它不相邻的两个外角的和

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服