ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:75.50KB ,
资源ID:32406      下载积分:1.5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/32406.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(二项期权定价模型.DOC)为本站上传会员【zhou****ping】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二项期权定价模型.DOC

1、 金融创新 分 析 师:高谦 报告类型:可转换债券研究 二项期权定价模型 摘要: 在可转债的定价过程中,期权部分的定价最为复杂,本文介绍了对可转债价值中期权部分的一种定价方法——二项期权定价模型,以单一时期内买权定价为例进行了。 一般来说,二项期权定价模型(binomal option price model, BOPM)的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头

2、交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。 一、对股票价格和期权价格变化的描述 假设股票当期(t=0)的价格S为100元,时期末(t=1)的价格有两种可能:若上升,则为120元,记做uS;若下降,则为90元,记做dS。执行价格为110元。相对应地来看,期权价格则分

3、别记做、、,则在t=1时,、分别等于max(120-110,0)、max(90-110,0),即10元和0。此时的状态可以用下图描述: uS=120 股价上升时 S=100 dS=90 股价下降时 =10 max(120-110,0) =? =0 max(90-110,0) 二、构建投资组合

4、求解买权 (一)构建投资组合 在上图中,唯一需要求解的是。为求解,也即给t=0时的买权定价,可以证明的价格可以通过建立期权和相关资产的零风险套利交易来得到,具体来说,就是考虑一个包括股票和无风险债券在内的投资组合,该组合在市场上不存在无风险套利机会时等于买权的价格,因此可以用来模拟买权的价格。 我们可以考虑这样一个投资组合: (1) 以价格卖出一份看涨期权; (2) 以价格100买入0.333股股票; (3) 以无风险利率8%借入27.78元。 (二)投资组合的净现金流分析 根据上述投资组合,可以得到t=0时期的净现金流为:-(0.333100+27.78)。根据前述对股票和期

5、权价格变化的描述,在到期日时会出现两种可能的结果,这两种结果在到期日时的现金流可以描述如下: 股价上升时的现金流 股价下跌时的现金流 买进一份看涨期权 -10(由max【120-110】得到) 0(由max【90-110】得到) 股票变现 40(由0.333120得到) 30(由0.33390得到) 偿付贷款 -30(由-27.781.08得到) -30(由-27.781.08得到) 净现金流 0 0 这表明,不管相关资产的价格是上升还是下降,这个投资组合的最终结果都一样,其净现金流均为零,该投资组合被称为零风险套头交易。如果该组合的最终结果为零,那么开始

6、获得此组合的适当价格也应为零,也即-(0.333100+27.78)=0,由此可以解出:=5.55。 三、对t=0时期买权价格变化的动态分析 如前所述,投资组合的最终净现金流为零,并由此得到了期权的最初价格。那么,如果期权的最初价格高于或低于这个价格时会出现什么情况呢? 首先,假设买权的价格高于5.55元,为10元,则投资者以10元的价格卖空买权,并同时构建前述投资组合,在t=0时期,投资者的净现金流入或净盈利为10-(0.333100-27.78)=4.45元。到期以后,投资者的净现金流为零,也就是说投资者在初期可以获得4.45元的无风险利润。如果市场上存在大量的套利者,这中非均衡状态

7、是不可能持久的,买权价格最终将会调整到均衡状态。 其次,如果买权的价格低于5.55元,比如为3元,这时投资者将购买一份买权,同时卖空0.333股股票,以及在8%的利率水平上投资27.78元。在t=0时,投资者的净现金流量为:-3+(0.333100-27.78)=2.55元。而在年底,入下表所示,其净现金流仍然为零。这说明,投资者在构建这样一个零风险套头交易以后,只要市场上买权的价格低于均衡价格,投资者就可以在初期获取无风险收益,而在到期日时无论股价如何变化,都不会产生损失。当然,与前述情况一样,这种状态不会持久,最终将会调整到均衡状态。 股价上升时的现金流 股价下跌时的现金流

8、 卖出进一份看涨期权 10(由max【120-110】得到) 0(由max【90-110】得到) 偿付卖空股票 -40(由-0.333120得到) -30(由-0.33390得到) 收回投资 30(由-27.781.08得到) 30(由27.781.08得到) 净现金流 0 0 四、单一时期内买权定价的一般推导 抛开特殊例子,考虑一个一般性的证券组合: (1) 以价格卖出一份看涨期权; (2) 以价格S买入N股股票; (3) 投资在无风险债券上。 这里的参数N和的取值均为满足零风险套头交易的特定取值,不管相关资产价格在到期日时是上升还是下降。无风险利率为R

9、因为初始现金流为零,则有: -(NS+)=0 (1) 假设在到期日时股票价格只有上升和下降两种可能的情况,那么可以设立方程组: -(NuS-R)=0 (2) -(NdS-R)=0 (3) 可以解出: N= = 将N、带入(1)可以解出: = 其中,如果假设:p=,则: = p为股票价格变化的概率,即股票价格以概率p上升到uS,而股票价格下降为dS的概率则为1-p。 我们力求报告内容的客观、公正,但文中观点、结论和建议仅供参考,投资者据此做出的任何投资决策与本公司和作者无关。 - 4 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服