ImageVerifierCode 换一换
格式:PPTX , 页数:46 ,大小:8.13MB ,
资源ID:3202656      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3202656.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(理学天津大学胶体与表面化学TEMsurfChem.pptx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

理学天津大学胶体与表面化学TEMsurfChem.pptx

1、2024/6/25周二1第四章第四章 透射电镜透射电镜(TEM)Transmission Electron Microscopy刘炳泗DepartmentofChemistryTianjinUniversity2024/6/25周二2一、一、Interactions of Electrons with Matter1.Elastic InteractionsNo energy is transferredfrom the electron to thesample(directbeamorisscattered).TEM,SAED2.Inelastic InteractionsEnergy i

2、s transferredfromtheincidentelectronstothesample:(EDXanalysis)2024/6/25周二31.Elastic InteractionsAnelectronpenetratingintotheelectroncloudofanatomisattractedbythepositivepotentialofthenucleus(Coulombicinteraction),anditspathisdeflectedtowardsthecoreasaresult.TheCoulombicforceFisdefinedas:withrbeingth

3、edistancebetweenthechargesQ1andQ2and0thedielectricconstant.Theclosertheelectroncomestothenucleus,i.e.thesmallerr,thelargerisFandconsequentlythe scattering angle.In rare cases,evencomplete backscattering can occur(backscatteredelectronsBSE).2024/6/25周二42.Inelastic InteractionsIonization:The high-ener

4、gy electrons of the incident beam can transfer a criticalamountofenergytoaninner-shellelectronofanatom,leadingtotheejectionofthiselectron.The ionization energy is provided by the incident electron,reducing itsenergy.Thisleadstoanionizationedgeintheelectronenergylossspectrum(EELS).Subsequently,thehol

5、eintheinner-shellisfilledupbyanelectronwithhigherenergyfroman outershell.Thiselectrongivesaway a partofitsenergy,leadingtotheemissionofcharacteristicX-raysorAugerelectrons.Secondaryelectrons:Electronsintheconductionorvalencebanddonotneedmuchenergy(low work function)to be transferred into vacuum.Thus

6、,the energy ofsecondaryelectrons(SE)islow(50eV).TheSEsaremainlyexploitedinSEM.Phonons:Phononsarelatticevibrations,whichareequaltoheatingthespecimen.Thiseffectmayleadtoadamageofthesample.Plasmons:Plasmons are longitudinal oscillations of free electrons,which decay either inphotonsorphonons.Cathodolum

7、inescence:Ifsemiconductorsarehitbyhigh-energyelectrons,electron-holepairscanbeformedbypromotinganvalenceelectronintotheconductionband.Fillingthisholewithanelectronfromtheconductionband(recombination)leadstotheemissionoflightwithafrequencythatcorrespondstothebandgap.2024/6/25周二5Basiccontrastmechanism

8、sinTEMandSTEM.Electrons,which come from thecondensersystemoftheTEM,arescatteredbythesample,situatedinthe object plane of the objectivelens.Electrons scattered in thesamedirectionarefocusedinthebackfocalplane,andasaresult,adiffractionpatternisformedthere.Electrons coming from the samepointoftheobject

9、arefocusedintheimageplane.IntheTEM,thefirstintermediateimageismagnifiedbyfurtherlenses(projectivesystem).2024/6/25周二6basiccontrastmechanismsinTEMandSTEM.Brightfield(BF)mode:Mass-thicknessanddiffractioncontrast contribute to imageformation:thickareas,areasinwhichheavyatomsareenriched,andcrystallinear

10、easappearwithdarkcontrast.In dark field(DF)images:Since diffracted beams havestrongly interacted with thespecimen,veryusefulinformation is present in DFimages,e.g.,aboutplanardefects,stackingfaultsorparticlesize.2024/6/25周二7BF and DF TEM images of ZrO2Electron diffraction pattern:the spots indicate

11、thepresenceofsinglemicrocrystals.Theapertures(redcircles)are localized around the direct beam forrecordingthebrightfield(BF)imageandaroundafewdiffractedbeamsforthedarkfield(DF)image.Theintensedirectbeamisblockedbyametalrod(black shadow on the left center)to avoidoverexposure.BFDF2024/6/25周二8HRTEM mo

12、deIfthepointresolutionofthemicroscopeissufficiently high and asuitable sample orientedalong a zone axis,then(HRTEM)imagesareobtained.Inmanycases,theatomicstructureofaspecimencandirectlybeinvestigatedbyHRTEM.2024/6/25周二9HRTEM modesinglecrystalsof(Ce0.5Zr0.5)O2AgparticlesupportedonZnOReO3 Structure202

13、4/6/25周二10Scanning Electron Microscopy(SEM)compactsamplescanthus be investigatedbySEM.Avaluableinformationaboutmorphology,surfacetopologyandcomposition can beobtained.SEMmicroscopesachievingresolutionsbelow1nmareavailablenow.2024/6/25周二11SEM:Imaging with Back-scattered ElectronsSEMimagesofFeparticle

14、sincarbonrecordedwiththesecondaryelectron(left)andtheback-scattered(right)electrondetector.TheBSEimageshowstheFeparticleswithbrightcontrast.2024/6/25周二12二、Imaging and Diffraction1.objective lens forms adiffractionpatterninthebackfocalplane2.diffraction pattern andimagearesimultaneouslypresent3.real

15、space(image)toreciprocal space(diffractionpattern)is easily achieved bychanging the strength of theintermediatelens.4.Apertureregulation2024/6/25周二13三、SchemeofaCM30TEM1.Electron gun:2.Condenser system3.Objective lens4.Diffraction/inter-mediate lens:5.Projective lenses:6.Image observation:7.Vacuum sy

16、stem:2024/6/25周二14四、四、Bragg Description of DiffractionIf the incident planewave hits the crystalat an arbitrary angle,theinterferenceofthereflected waves canbe either destructiveorconstructive.Destructive interference of reflectedwaves(Max.and Min.of the waveamplitudearesuperimposed).Constructive In

17、terference ofreflectedwaves(maximaaresuperimposed).2024/6/25周二15To obtain constructive interference,the pathdifference between the two incident and thescattered waves,which is 2dsin,has to be amultipleofthewavelength.Forthiscase,theBragg law then gives the relation betweeninterplanardistancedanddiff

18、ractionangle:2024/6/25周二16Electron Diffraction(ED)Electron diffraction is a collective elastic scatteringphenomenonwithelectronsbeingscatteringbyatomsinaregulararray(crystal).Theincomingplaneelectronwaveinteractwiththeatoms.Secondarywavesaregeneratedwhichinterferewitheachother.Thisoccurseitherconstr

19、uctively(reinforcement)ordestructively(extinguishing).As in X-ray diffraction(XRD),the scattering event can be described as areflectionofthebeamsatplanesofatoms(latticeplanes).The Bragg law gives the relation between interplanardistancedanddiffractionangle:2024/6/25周二17Since the wavelength of the el

20、ectrons isknown,interplanardistancescanbecalculated from ED patterns.Furthermore,information about crystal symmetry can beobtained.Consequently,electron diffractionrepresentsavaluabletoolincrystallography.2024/6/25周二18Estimate of scattering anglesel=0.00197nm(1.97pm)for300kVelectrons.Atypicalvaluefo

21、rtheinterplanar distance is d=0.2 nm.IfthesevaluesareputintheBragglaw,thenthescatteringangleis:=0.28.Asarule,thescatteringanglesinEDareverysmall:02.2024/6/25周二191.Reflectinglatticeplanesare almost parallel to thedirectbeam.2.Incident electron beam isthezoneaxisofthereflectingsetsoflatticeplanes2024/

22、6/25周二20Comparison of Electron(ED)and XRDBoth,ED and XRD,are caused by positiveinterference of scattered waves,and the samefundamentallaws(e.g.,Bragglaw,extinctionrules)canbeappliedfortheinterpretationoftheresultingdiffractionpatterns.Inbothcases,diffractionpatternsofpowdersandofsinglecrystalsappear

23、.However,EDshowssomeuniquecharacteristics:2024/6/25周二211.The wavelength of electrons(e.g.,1.97 pm for 300keVelectrons)ismuchshorterthanthatofX-rays(about100 pm).Therefore,the radius of the Ewald sphere ismuchlargerandmorereflectionsarise.2.The diffraction angles are very small:ED 0-2(cf.,XRD0-180)3.

24、Electronsarescatteredbythepositivepotentialinsidetheelectroncloud,whileX-raysinteractwiththeelectroncloud.As the result,the interaction of electrons withmatterismuch(106-107)strongerthanthatofX-rays.2024/6/25周二22TheadvantageandthedisadvantageofED1.thediffractedelectronbeamshave a high intensity ande

25、xposure times.ED patternscan directly be observed onviewingscreenofTEM.2.diffraction patterns can beobtained from very smallcrystalsselectedwithadiffracted aperture(SelectedAreaElectronDiffractionSAED)1.multiplescatteringplaysanimportantrole,ThismakesstructuredeterminationfromEDmoredifficult and les

26、sreliable than thatfromXRDdata.2024/6/25周二23Ewald Sphere of DiffractionThe diffraction,which mathematically corresponds to aFouriertransform,resultsinspots(reflections)atwell-definedpositions.Eachsetofparallellatticeplanesisrepresentedbyspots(distance of 1/d:d:interplanar spacing)from theorigin and

27、which are perpendicular to the reflecting set oflatticeplane.2024/6/25周二24La2NiO4(4cm/2cm)*51/nm=(101/nm)=(1/10nm)=0.1nmCatal.Today,131(2008):5332024/6/25周二25Carbondeposition overMo2C/ZSM-52024/6/25周二26Calculation:(0.81cm/2cm)*51/nm=(2.0251/nm)=0.494nm1/d=0.493nm1/d=0.294nmSAEDofMo2CUnitCell:Hexagon

28、ala=0.3002nmb=0.4724nmAIChEJ57(2011):18522024/6/25周二27The diffraction can be described inreciprocal space by the Ewald sphereconstruction(Figurebelow).Aspherewithradius1/isdrawnthroughtheoriginofthe reciprocal lattice.Now,for eachreciprocal lattice point that is located ontheEwaldsphereofreflection,

29、theBraggconditionissatisfiedanddiffractionarises.2024/6/25周二28point 0:origin ofreciprocallatticek0:wavevectoroftheincidentwavekD:wavevectorofadiffractedwaveZOLZ:ZeroOrderLaueZoneFOLZ(SOLZ):First(Second)OrderLaueZone2024/6/25周二29Duetothesmallwavelengthofelectrons(e.g.,=1.97pmfor300keVelectrons),thera

30、diusoftheEwaldsphereislargerandmanyreflectionsappear.Furthermore,thelatticepointsareelongatedinEDtoformrodssothattheEwaldsphereintersectsmorepoints(seefigure).Becauseofthat,diffractionoccurseventhentheBraggconditionisnotexactlysatisfied.Infact,EDpatternsare2Dcuttingsofreciprocallattice.Therod-shapei

31、sduetothefactthatTEMspecimensareverythinin real space,leading to an elongation in reciprocal space.Iftheinterplanardistanceindirectionofobservationislarge(that means a small distance between ZOLZ and FOLZ inreciprocal space),higher order Laue zones(HOLZ)can beobservedaswell.A general introduction in

32、to diffraction is given in aninteractivetutorialbyProvenandNeder.2024/6/25周二30Electron diffraction patterns of Ta97Te60 along twoperpendicular directions.The parameters of thetetragonal unit cell can be determined from theseSAEDpatterns:a=27.6,c=20.6.2024/6/25周二31Electron diffractionpattern of YbSi1

33、.41along001.Thereflectioncondition:h+k=2nforhkl(Cfacecentering)isfulfilled.2024/6/25周二32EDpatternofpolycrystallineplatinum.Theindicesare assigned to thediffraction rings inaccordanceoftheface-centeredcubiclatticeofPt(reflection condition:h,k,lallevenorallodd).2024/6/25周二33In the pseudo-binary system

34、 Nb2O5/WO3,Nb8W9O47,crystallizinginathreefoldsuperstructureofthetetragonaltungsten bronze(TTB)type,represents the most stablecompound.The superstructure arises from a systematicoccupation of a part of the pentagonal channels withmetal-oxygenstrings(seefigure).HRTEMimageofNb4W13O47along001.Theinsetss

35、howthestructuralmodelandasimulation(EMSprogram).2024/6/25周二34HRTEMimageandSAED(inset)ofAl-MCM-41(50).LiuBSetalJPhysChem.C2008,112:15490SBA-152024/6/25周二35SBA-152024/6/25周二36STEM+EDXSPoint Analysis in STEMInSTEM,anelectronbeamisscannedoveradefinedareaofthe sample.The beam can belocalizedon a certainp

36、oint intheimageandusedtomeasurean EDX and/or EEL spectrumat there.Moreover,line scansandmappingscanbeobtainedbythispowerfultechnique.Example:Molybdenum Tungsten Oxide2024/6/25周二37Tosolvethequestionwhetherthenanorodsconsistofamixed Mo-W oxide or of the separated binary oxidesMoO3andWO3,spotanalyseswe

37、reperformed.TheEDXspectrum obtained at the position encircled in theHAADF-STEMimageshowsbothmetalsandthusprovesthepresenceofamixedoxideX-ray SpectroscopyX-rayspectroscopyisavaluabletoolforqualitativeand quantitative element analysis.Each element hascharacteristic peak positions corresponding to thep

38、ossibletransitionsinitselectronshell.2024/6/25周二38Thepresenceofcopper,forexample,isindicatedbytwoKpeaksatabout8.0and8.9keVandaLpeakat0.85eV.Inheavyelementsliketungsten,alotofdifferenttransitionsarepossibleandmanypeaksaretherefore present.TEMs are almost exclusively equipped withenergy-dispersivespec

39、trometers(energy-dispersiveX-rayspectroscopyEDXS).2024/6/25周二39Generation of X-rays 1.Ionization:Aholeinaninnershell(here:Kshell)isgeneratedbyanincidenthigh-energyelectronthatlosesthecorrespondingenergyEtransferredtotheejectedelectron.*2.X-rayemission:TheholeintheKshellisfilledbyanelectronfromanoute

40、rshell(here:L3).ThesuperfluousenergyisemittedasacharacteristicX-rayquantum.InatypicalX-rayspectrum,therearemany peaks caused by such aprocess.TheX-rayenergycorrespondstoacertaindifference in inner-shell energies.Thus,the detection of characteristic X-ray isspecificforaelementinthesample,andX-rayspec

41、troscopycanbeemployedforqualitativeanalysis.2024/6/25周二40Generation of X-rays Another inelastic interaction of the incident electron with matterrepresentsitsdecelerationbytheCoulombfieldofthenucleus.ThisprocesscreatesX-raywithanyenergysmallerthanthebeamenergy.TheseX-raysarecalledbremsstrahlungandfor

42、mtheuncharacteristicspectrumbackground.If the X-ray spectrum was measured on a TEM,the Cliff-Lorimerratiotechniquecanbeappliedforthequantification:NA/NB=kAB IA/IBNA,NB:atomic%ofelementA,B.IA/IB:measuredintensityofelementA,B.kAB:Cliff-Lorimerfactor.Quantitative X-rays Analysis2024/6/25周二41Generation

43、of X-rays TheCliff-LorimerfactorisNOTaconstantbutdependsontheTEM voltage,on the detector efficiency and several otherparameters.Thus,accurateresultscanonlybeobtainedifastandardcontainingtheelementsAandBinawell-definedratioisusedtodeterminekAB.CalculatedvaluesofkAB,whicharegivenbythevarious programs

44、used for X-ray spectroscopy,are only rawapproximationsandcanonlybeusedforquickandratherinaccurateanalyses.Although the program output for the composition is aseeminglyaccuratevaluewitharathersmallerrorbar,theactualerror might be much higher because of the kAB problem.Inallcases,thebackground(bremsst

45、rahlung)hastobesubtractedfirst.Theaccuracyofthequantificationisadditionallyreducedbystatisticalerrorsofthemeasurement,absorption,fluorescence,andelectronchanneling,justtomentionthemostimportanteffects.2024/6/25周二42Generation of X-rays 2024/6/25周二43DetectorAbsorptionElementWeight%Atomic%Uncertainty%C

46、orrectionk-FactorCorrection-O(K)25.08453.3820.3810.4952.0590.952Si(K)23.65028.6710.2520.9781.0000.978S(K)0.7190.7640.0410.9561.0500.985Fe(K)13.1448.0130.2100.9971.4770.996La(K)37.4009.1670.7730.87617.0141.000Correctionmethod:ThicknessQuantificationResultsRef.B.S.LiuetalAppl.Catal.B102(2011):27-36202

47、4/6/25周二44STEM+EDXSIntheHAADF-STEMimage(Zcontrast),themetalparticlesappearbright.EDXSspotanalyseswereperformedbyfixingthepositionoftheelectronbeamonmetalparticlesbeingonlyafewnmlarge.BothparticlesinvestigatedcontainPdandPtsimultaneously.122024/6/25周二452024/6/25周二46http:/www.microscopy.ethz.ch/ED-Ewald.htm

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服