ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:307KB ,
资源ID:3162723      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3162723.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023年多边形的知识点总结.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年多边形的知识点总结.doc

1、个性化教学辅导方案 教学 内容 多边形 教学目的1使学生了解多边形的内角、外角等概念2能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算 重点难点重点:(1)多边形的内角和公式 (2)多边形的外角和公式难点:多边形内角和的推导。教学过程知识梳理一、 多边形基础你能仿照三角形的定义给多边形定义吗?1定义:在平面内,由一些线段首位顺次相接组成的图形叫做多边形假如一个多边形由n条线段组成,那么这个多边形叫做n边形(一个多边形由几条线段组成,就叫做几边形)2多边形的边、顶点、内角和外角多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角每相邻

2、的两条线的交点叫作多边形的顶点。总结:对于一个n边形,(n3)它有 个顶点, 个内角。3多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线你能推导出n边形的对角线的条数公式吗?例1:若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形4凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特性,由于我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,此后我

3、们在习题、练习中提到的多边形都是凸多边形5、由正方形的特性出发,得出正多边形的概念各个角都相等,各条边都相等的多边形叫做正多边形例1:画出下图中的六边形ABCDEF的所有对角线例2:如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?二、 多边形内角和以五边形为例,求其内角和。方法一:方法二方法三总结:n边形的内角和公式为: (n3)例1 假如一个四边形的一组对角互补,那么另一组对角有什么关系?例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的内角和是多少?外角和等于多少?总结:多边形的外角和等于360例1:四边形ABCD中,假

4、如A+C+D=280,则B的度数是( ) A80 B90 C170 D20例2一个多边形的内角和等于1080,这个多边形的边数是( ) A9 B8 C7 D6一、选择题1多边形的每个外角与它相邻内角的关系是( ) A互为余角 B互为邻补角 C两个角相等 D外角大于内角2若n边形每个内角都等于150,那么这个n边形是( ) A九边形 B十边形 C十一边形 D十二边形 3一个多边形的内角和为720,那么这个多边形的对角线条数为( )A6条 B7条 C8条 D9条 4随着多边形的边数n的增长,它的外角和( )A增长 B减小 C不变 D不定 5若多边形的外角和等于内角和,它的边数是( ) A3 B4

5、C5 D7 6一个多边形的内角和是1800,那么这个多边形是( )A五边形 B八边形 C十边形 D十二边形 7一个多边形每个内角为108,则这个多边形( )A四边形 B,五边形 C六边形 D七边形 8,一个多边形每个外角都是60,这个多边形的外角和为( ) A180 B360 C720 D1080 9n边形的n个内角中锐角最多有( )个A1个 B2个 C3个 D4个 10多边形的内角和为它的外角和的4倍,这个多边形是( )A八边形 B九边形 C十边形 D,十一边形二、解答题1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?2、已知多边形的内角和为其外角和的5倍,求这个多边形的边数3、若一个多边形每个外角都等于它相邻的内角的,求这个多边形的边数能力提高1、一个多边形的每一个外角都等于24,求这个多边形的边数. 2、一个多边形少一个内角的度数和为2300 (1)求它的边数; (2)求少的那个内角的度数3、四边形ABCD中,A+B=210,C4D求:C或D的度数4、多边形的一个内角的外角与其余内角的和为600,求这个多边形的边数 课后小结本节课知识传授完毕情况:完全能接受 部分能接受 不能接受 学生的接受限度: 很积极 比较积极 一般 不积极学生上次的作业完毕情况:数量 % 完毕质量:优 良 中 下节课的教学内容:备 注核查时间教研组长核查教学主任核查

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服