ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:4.60MB ,
资源ID:3128902      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3128902.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(具有超临界相位的特殊拉格朗日型方程的Neumann问题.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

具有超临界相位的特殊拉格朗日型方程的Neumann问题.pdf

1、数学杂志Vol.43(2023)J.of Math.(PRC)No.6THE NEUMANN PROBLEM FOR A SPECIALLAGRANGIAN TYPE EQUATION WITHSUPERCRITICAL PHASEJIA Hao-hao,XU Wen-zhao(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)Abstract:In this paper,we explore the Neumann problem for special lagrangian type equ

2、a-tions with supercritical phase in Rr.We show the global C2 a priori estimates of the solution andestablish the existence of classical solutions by the methods of continuity.Keywords:Neumann problem;special Lagrangian type equation;supercritical phase2010 MR Subject Classification:35J60;35B45Docume

3、nt code:A1 Introduction and main resultsWe consider the Neumann problem of a special Lagrangian equationwherearctanu l n -D?u =:a r c t a n n i +a r c t a n n 2 +.+a r c t a n n n.Denote n:=(ni,n2,:,nn)which are the eigenvalues of the matrix uln-D2u in 1 withwhere 入=(Ai,2,*.:,An)are the eigenvalues

4、of the Hessian matrix D?u.Here()isusually studied under three different types of two boundary value conditions:the phase,the critical phase,supereritical phase.More preisely,(a)e(-,),e=Pr,pr (a)n his papr,we conider h speia agrangian equation(.)with2supercritical phase,that is the third type.The fir

5、st boundary value problem(Dirichlet problem)for elliptic partial differentialequations has been intensively studied many years.For the Laplace equation,results canbe found in Gilbarg-Trudinger 2.The Dirichlet problem for Monge-Ampere equations*Received date:2022-09-04Foundation item:Supported by Nat

6、ional Natural Science Foundation of China(12171260).Biography:Jia Haohao(1995-),female,born at Handan,Hebei,postgraduate,major in partialdifferential equations.E-mail:Article ID:0255-7797(2023)06-0471-16arctanu In -D u)=O(c),in 2 C R,n=Z入,Vi=1,2,.,n,kiAccepted date:2022-12-05(1.1)2,22472was investig

7、ated in Caffarelli-Nirenberg-Spruck 3 and Krylov 4.They showed the globalregularity of solutions.Caffarelli-Nirenberg-Spruck 5 studied the existence of admissiblesolutions and the global regularity of k-Hessian equations.The Hessian quotient equationswhich have different structure conditions were st

8、udied in Trudinger 6.To the best of myknowledge,the special Lagrangian equationJournal of MathematicsVol.43was introduced in Harvey-Lawson 7 firstly and is a constant called the phase angle.In their study,the graph a (,Du(a)defines a calibrated,minimal submanifold of R2n.Collins-Picard-Wu 8 consider

9、ed the Dirichlet problem to Lagrangian phase operator in boththe real and complex setting.They solved the concavity of Lagrangian phase operator,theessential condition,to obtain the existence theorem by using the classical methods.Recently,Zhu 1 established the global C2 estimates and showed the exi

10、stence theorem of the Dirichletproblem to(1.1).For the Neumann and oblique derivative problem of elliptic equations,there are manyresearch results.A priori estimates and the existence theorem of the Laplace equation canbe found in 2.And,we can see more results about the Neumann and the oblique deriv

11、ativeproblems of linear and quasilinear elliptic equations in Lieberman 9.The Neumann problemof Monge-Ampere equations was solved in Lions-Trudinger-Urbas 10.Ma-Qiu 11 studiedthe Neumann problem of k-Hessian equations in uniformly convex domain.And,Chen-Zhang 12 solved the Neumann problem of Hessian

12、 quotient equations,the general formsof k-Hessian equations.For the special Lagrangian equation with supercritical phase instrictly convex domain,Chen-Ma-Wei established the global C2 estimates and obtained theexistence theorem by the method of continuity in 13 recently.It is worth mentioning that t

13、he key to solving of the existence and uniqueness of classicalsolutions for elliptic partial differential equations is to establish the global a priori estimatesand the method of continuity in above works.To our best knowledge,the existence theoremof the classical Neumann problem to(1.1)with supercr

14、itical phase has not been studiedbefore.In this paper,we apply the method used in 9,10 and show the existence theoremof the Neumann problem of special Lagrangian equation following the classical idea(see forexample 14 or 15).More precisely,we get our theorem.Theorem 1.1 Suppose 2 C Rn is a C4 strict

15、ly convex domain and v is outer unitnormal vector of 00.Let p E C8(0n)and e(a)e C(2)with(n-)e(an)0.We need to establish a priori estimate of ue which is independent ofe,and the strict convexity of 2 plays an important role.By taking the limit on e and theperturbation argument,we can obtain the exist

16、ence of a solution of(1.2).2 PreliminariesIn this section,we show some properties of the special Lagrangian equation with super-critical phase.Property 2.1 Let R beadomain and(a)ith Pr(a)0,In-1l nn,InilCo,maxewhere Co=max(tan(-)-min O),an(2The proofs are analogous to Property 2.1 and Lemma 2.1 in 1,

17、13,16,17 and are omit-ted.The following property is Property 2.2 in 1 and we give the proof here for convenience.Property 2.21 Suppose 2 C R is a domain and e(a)e C2(2)with(n-2)0(c)0and o(m)C()with pr 0.So u attains its maximum at some boundary pointCo E a2.Then we have(3.2)andeu eu(ro)p(ro)maxlpl.W

18、e can assume O e 2,and denote B=2(a-1 tan(maxen+oo.Then we havearctan n(Du)=max =arctan(D(Blal2).Using the comparison principle,we get u-Blcj2 to attain its minimum at a boundary pointyo E a2.Therefore,(3.5)Then,we haveeu e(u-Blal2)e(u(yo)-Blal)-2Bdiam(2)-max -Bdiam(2)2.The Neumann problem for a spe

19、cial lagrangian type equation with supercritical phase4750 ur(co)=-u(co)+(co),(3.3)8(3.4)0 (u-Blal)(yo)=uv(yo)-2Byo V-u(yo)-(yo)-2Bdiam(2).(3.6)3.2 Global C1 estimateIn this subsection,we prove the Ci estimate of solutions for the special Lagrangianequation(1.3)with supercritical phase.We show the f

20、ollowing theorem.Theorem 3.3Suppose 2 c Rn is a C3 uniformly convex domain and E C2(02).Let e(a)=Ci()with(2(a)0,then we havesup|DulMi,where Mi depends only on n,2,max O,min O,Mo,Olc1 and plc2.Proof We just have to provewhere =(S1,:,Sn),Isl=1.Choose(3.7)Deu(a)Mi,V(a,t)e Sn-1,(3.8)w(a,E)=Dgu()-(v,s)(-

21、eu+)+e?u?+K|cl2(3.9)476where v is a C2(2)extension of the outer unit normal vector field on 02,e is a small positiveconstant in(1.3)and K is a large positive constant.Note that here E C2()is an extensionwith universal C2 norm.Suppose w(a,s)attains its maximum at(co,So)e Sn-1.Inthe following,we divid

22、e(3.8)into two steps.1.We claim that ro E 00.Assume co E 2,and we will prove Fiouw(a,o)la=ao 0to establish a contradiction.For Co E 2,we can assume D2u(co)is diagonal with 入;=uiand 入 入2 .An by rotating the coordinate(ei,*,en),then Fii(co)is diagonal.Then we have(3.10)uijP+i0,Hence we can get from Pr

23、operty 2.1,F11F22.11+%Co0;p+nnFiui=np1+工2P=1where Co=1(n=,)min)1+max(tan2We suppose the maximum of w fixed in some direction So,all the calculations are at coin the following.We get0 EFaw(r,S0)la=ao=Z Fuito-(v,So)a(-eu+p)-2(v,So)(-eui+p)-(v,o)(-euu+pa)+2e(u+wua)+2K)Journal of Mathematicsa arctannFim

24、ax,tanVol.43ifi=j,ifi牛j.Fnn.1(3.11)(3.12)(3.13)2+Z F2K-(v,0)a(-u+0)-2(v,S0);pi-(v,0)pia 0o+EFv,0)eui+2e wual+Fi(eui+(v,0),)?+F2K-(v,So)a(-su+)-2(v,So);i-(v,o)Pi-(v,So)n-VOI-2十1+Cwhere Co is defined in(2.5),C1 is a positive constant depending only on n,Mo,Ilc2,Ilolc2.C2 is positive constant depending

25、 only on Ci and lc1.diction.Thus ao E a2.np+ZF2K-C1-|D(v,0)1P1(2K-C2),No.62.We now consider the direction so with the following three cases.Case a:So is normal to 2 at o,then we havew(co,So)=2(-su+P)+s2u2(co)+K|col C4.And,Deu(c)=w(c,s)+v,s)(-u+p)-s?u?-K|ro w(co,So)+CsC6.Case b:So is non-tangential b

26、ut not normal to o2 at co.We can find a tangentialvector T E Sn-1 such that So=T+v,with=o T 0,=So V 0,Q?+2=1 andT V=0.Without loss of generality,we take 0 0 in 2;/Vd|=1 on o2.478And,the matrix dil1i,jn-1 -Kmin,where Kmin is the smallest principal curvature ofthe boundary.Because w(co,S)attains its m

27、aximum at direction E=So,it is easy to getul(co)0,u2(ao)=.=un-1(ro)=0,un(co)=-uv(ao)=eu(co)-p(ao).On the other hand,from Vk=-dk,Hence,-DuDiv diiui+Ci1 -Kminw(co,So)+Ci1.Then,we haveSimilar to the(3.14)and(3.15),we haveThe proof is complete.3.3 Global second derivatives estimateWe consider now to the

28、 global second derivatives and we can get the following theoremTheorem 3.4 Suppose 2 c Rn is a C4 strictly convex domain and E C3(2).Let 0(m)e C()with Pr e(a)0,then we have(3.16)where M2 depends only on n,2,max O,minO,Mo,Mi,Olc2 and olc3.We firstly reduce global second derivatives to double normal s

29、econd derivatives onboundary and then we show the estimate of double normal second derivatives on bound-ary following the standard method in Lions-Trudinger-Urbas 10 and Ma-Qiu 11.Lemma 3.5Suppose 2 C IRn is a C4 convex domain and E C3(02).Let 0(a)EC()with-)0(a)0,then we havesup|D?ul C14(1+sup|uvvl)

30、,where C14 depends only on n,2,max O,min O,Mo,Mi,Olca and Iplcs.Journal of MathematicsDuDiV=Di(vk)Dkun82dk=1nCdiuk=-Ediu-dinunk=1k=1n-1-Zdik u-C/Dvu(ao)lk=1-d11ui-Cl1w(ao,o)IDel+Cro+Cu.Deu(a)=w(r,5)-u?-Ke/w(ro,So)+C12 C13.2Vol.43k:un-1.Kminsup|D?ul M2,82(3.17)No.6Proof There exists a small constant

31、0 such that d(a)e C4()and v=-Dd on02 because 2 is a C4 domain.Define d e C4(2)such that d=d in and denoteNote that v is a C3(2)extension of the outer unit normal vector field on 02.We assume 0 e 2 and consider the auxiliary functionwhere u(a,E)=2($v)S-(Dp-eDu-uDul)=auu+b,E=-(S-v)v,al=-2(.v)(s-Dvl)-2

32、(v)e($),b=2(v)($Dp),and Ki 0 is to be determined later.Andwe know that here p E C3()is an extension with universal C3 norm.RecallBy rotating the coordinates,for any a e 2,we assume D2u is diagonal with A;=ui(i=1,2,.:,n)and 1 2 .入n.We know that(3.10)-(3.13)in the proof of Theorem3.3 stll hold.From Pr

33、operty 2.2,for any fixed$e Sn-1,we haven订1provided byKi=D?0+A|De?+|a|De|+Dal+D?alI ul+2b+1.So maxv(a,$)attains its maximum on 02.Therefore,we can assume the max,v(c,)xSnattains its maximum at some point ao E 0Q and some direction So E Sn-1.We consider twocases in the following and all the calculatio

34、ns are at the point ao and =Eo.Case a:So is tangential to 02 at Co.Naturally,So-v=0,u(co,So)=0,and ugoso(co)0.Recall the following formulas inthe book 9,(3.19)n2vD,v=0.i=1where C is a constant depending only on n and 2.As in 9,we still defineThe Neumann problem for a special lagrangian type equation

35、 with supercritical phasen=10s-A0s?-aOt-Da|-FDudu+bul+Ki0IDul C,in,nCvD;vj=0,=1,in,i=1ci=ij-vivi,in Z,479V=-Dd,in2.(a,s)=uet-u(a,s)+Kilal2,Fi _ arctann.Quini=1i1(3.18)nFii=1nni1nFii1(3.20)(3.21)480and for a vector C e R,we denote for the vector with i-th component-cicj.Thenwe have(3.22)i,j=1And,uiul

36、=ci+vivijululj=cD;(ulut)-D,uul+vvivlutj=-cieuj+ciDip-cuDjul+vivivluuj.The last equation used boundary conditions.Then,ulipvl=cpa+vPv9utiaul=cpDa(uivl)-uiDau+vPvuigul=cpDa(-ceuj+ci Dip-cauDjul+vvivluti)-cpauiDaul+vPvyluia,hence we obtainnipl=1nip=1nJournal of MathematicsnI(Du)/2=Zci uiuj and Dul2=(Du

37、)1?+uz.-cpauiDaul+vPvayluialVol.43(3.23)(3.24)i1=-Soseci ujg-Dac uj+SosgDa(ci Di)-SsDa(c Djvul)ut-sgugD,ul+SisgDaviuv-Sosg ugDiu-utoto-26ouitoD;vl+C1s+Ci1slDul+C1sluvl.Without loss of generality,we assume So=e,then we can get the bound for ui(co)fori I due to the maximum of at the So direction.Next,

38、we can ssume e(t)=yr.By calculating,(3.26)(3.25)V1+t2du(co,s(t)0一dtd(t)=2ui(odt=2ui2(co)-2v2(D1-su1-uDivl),t=0du(co,E(t)(0)dtt=0No.6thenAnalogously,for all i 1,we haveFrom D;vl 0,we haveOn the other hand,from the Hopf lemma and(3.23),we haveHence,oso(ao)(Ci7+Cis)(1+|uvvl).Since u is the subharmonic

39、function and(3.31),we obtainmax,luge(a)/(n-1)。ma x,u g s(a)2xSn-1Case b:So is non-tangential.In this case,we have So V+0.In fact,we can find a tangential vector e Sn-1 suchthat Eo=T+v,with =So T 0,=So V 0 and?+2=1.Naturally,T V=0.So,uzoso(co)=2utt(ro)+2uvv(ao)+2utv(co)=2u(co)+2uv(co)+2(o )o-(o v)Dp-

40、Du-uDvl,(3.33)then,(co,So)=2(ao,T)+2v(ao,V)2(co,So)+2v(co,V).The Neumann problem for a special lagrangian type equation with supercritical phaseu12(ro)=?(Di-sul-uDivl)/Cis+C1e|Dul.usoSov -Utoso-Divlutoto+Ci7(1+uvvl)-uoSo+Ci7(1+|uuvl).0 uv(aco,So)=uoov-auv-Dvaul-b+2Ki(D)-uo%o+Ci7(1+uvl)+Ci8.(n-1)max,

41、u(r,s)+C1o)2xSn-=(n-1)u(co,So)+C19(n-1)ut050(co)+2C19C20(1+|uvvl).481(3.27)u1i(co)|C16+C16|Dul.(3.28)(3.29)(3.30)(3.31)2xSn-(3.32)(3.34)482By the definition of(co,So),we knowandSimilarly to(3.32),we complete the proof of the lemma.Lemma 3.66Suppose 2 C IRn is a C3 strictly convex domain and E C3(02)

42、.Let(r)e C()with-2 0(a)0,then we havewhere C22 depends on n,2,max,min O,Mo,Mi,JOlc2 and Iplcs.Proof Since 2 is a C3 strictly convex domain,we can find the defining functionp E C3(2)for it such thatwhere ao is a positive constant depending only on 2,and In is the n x n identity matric.And,V=(vl,v?,.:

43、,v)is a C?()extension of the outer unit normal vector field on 02as in Lemma 3.5.By the classical barrier technique in 11,we consider the functionwhere K2=max2+C(D ll+/Dvl+1),%(I Dl D2v1+?0l)and C isthe constantin(2.5).Also note that here E C2()is an extension with universal C2 norm.RecallFor any E

44、2,we can assume D?u is diagonal with 入;=ui and 1 2 .An.Weknow that(3.10)-(3.13)in the proof of Theorem 3.3 still hold.Hence we can getni=1Journal of Mathematicsu(co,So)u(co,V),uoso(ao)u(co,o)+C21 v(ao,V)+C21 uvl+2C21:min uvv -C22,852p=0 on 2,p0 in 2;IDpl=1 on a2;D?p aoIn,P(a)=uy+eu(c)-p(ac)+K2p,aoFi

45、_ Daretann.uiin=1=D0u+2Fua(vi):+Fu(u)1i=1-|DOlul-Du|-DullD2vl)K2a01-DO/l-Dl-2?ni=10.Vol.43(3.35)(3.36)(3.37)(3.38)nFi pi1i=1n)u+eZFiu-nni=1i1nPlFi+K2aon三2=1121+Co2K2a0n2i=1i-1n一pi+K2i=11i=1=1“pii(3.39)No.6Also,it is easy to know P=O on o2.Hence P attains its maximum on any boundarypoint.Then we can

46、get for any a E a2,(3.40)hence(3.37)holds.In the following,we establish the upper estimate of double normal second derivativeson boundary.Lemma 3.7Suppose 2 C Rn is a C3 strictly convex domain and E C3(2).Let0(a)E C?()with(n-2)元2 0(c)0,then we have(3.41)where C23 depends on n,2,max,min O,Mo,Mi,JOlc2

47、 and lc3.Proof Similar to the proof of Lemma 3.6,we now consider the test functionwhere K=max(2(+(IDll+Dvl+),%(I Dul/D?vl+ID2l)and Co s the constant in(2.5).And,here E C2()is an extension with universal C?norm.DenoteFor any a E 2,we can assume D?u is diagonal with A,=ui and i 2 :.An.Weknow that(3.10

48、)-(3.13)in the proof of Theorem 3.3 still hold.Hence we can getnuau+2u(ul):+u(ul)al+euu-pu)-RF paThe Neumann problem for a special lagrangian type equation with supercritical phasen4830 P,(a)=uu-Z uCudjv+euy-pul+K2pvuyv+DulD?d+Dul+Dol+K2,max uv C23,P(ac)=uy+eu(c)-p(a)-Kp,aoFiuii(3.42)arctan nni=1i=1

49、=ou+22Fi1|DO|lul+Du+Dul|D?ulnKao1|DOul+Dul+21+C2nn=1=1 0.Let ue=e-Ja u,and itis easy to know ve satisfies(4.2)()=-eus-尚 Jae+(a),E0n.By the gradient estimate(3.7),we know e sup|Due|-0.Naturally,there is a constant and a function ue C2(),such that-sus=,-eve 0,-Jaeue and us-uuniformly in C2()as e 0.It

50、is easy to verify that u is a solution of(4.3)Uv=+p(),E a2.Journal of Mathematics0 P(a)=uv-udiu+euu-pu-Kpu5uv-|Dul|D?d-|Dul-Dl-K,Iulc2.a()C,arctanAvIn-D2vs=O(a),E 2,arctanu In -D?u)=O(),E 2,Vol.43(3.44)No.6If there exists another function U1 E C2()and another constant i satisfyingand we can know =i

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服