1、第一章1.6一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。例如研究一家店铺月销售额的计量经济模型:其中,为该月店铺销售总额,为该月店铺销售量,二者是经济变量;和为参数;是随机误差项。1.7答:经济变量反映不同时间、不同空间的表现不同,取值不同,是可以观测的因素。经济参数是表现经济变量相互依存程度的、决定经济结构和特征的、相对稳定的因素,通常不能直接观测。参数是未知的,又是不可直接观测的。由于随机误差项的存在,参数也不能通过变量值去精确计算。只能通过变量样本观测值选择适当方法去估计。1.11答:时间序列数据:
2、中国1990年至2013年国内生产总值,可从中国统计局网站查得数据。截面数据:中国2013年各城市收入水平,中国统计局网站查得数据。面板数据:中国1990年至2013年各城市收入水平,中国统计局网站查得数据。虚拟变量数据:自然灾害状态,1表示该状态发生,0表示该状态不发生。1.13为什么对已经估计出参数的模型还要进行检验?你能举一个例子说明各种检验的必要性吗?答:一,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济理论对所研究对象也许还不能作出正确的解释和说明。二,经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察了某些特殊的样本,以局部去说明全局的变
3、化规律,可能导致偏差。三,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数只是抽样的某种偶然结果。第二章2.3(1) 当时,消费支出C的点预测值: (元)(2)平均值的预测区间:已知: ,=(650-27.5380,650+27.5380)=(622.46,677.54)当时,在95%的置信概率下消费支出C平均值的预测区间为(622.46,677.54)元。(3)个别值的预测区间:=(650-30.1247,650+30.1247)=(619.88,680.12)元当时,在95%的置信概率下消费
4、支出C个别值的预测区间为(619.88,680.12)元。2.4(3)区间预测取=0.5,平均值置信度95%的预测区间为已知=1556.647,(10)=2.228,=31.736,n=10=(1.9894)2*11=43.5348=(4.5-3.5233)2=0.9539当=4.5时,将相关数据代入计算得到1556.6472.228*31.736*=1556.64722.9386即是说,当建筑面积达到4.5万平方米时,建造平均单位成本平均值置信度95%的预测区间为(1533.7084,1579.5856)元。第三章思考题3.2答:多元线性回归模型中,回归系数(,)表示的是当控制其它解释变量不
5、变的条件下,第个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。简单线性回归模型只有一个解释变量,回归系数表示解释变量的单位变动对被解释变量平均值的影响。多元线性回归模型中的回归系数是偏回归系数,是当控制其它解释变量不变的条件下,某个解释变量的单位变动对被解释变量平均值的影响,从而可以实现保持某些控制变量不变的情况下,分析所关注的变量对被解释变量的真实影响。3.3答:多元线性回归中的古典假定比简单线性回归时多出一个无多重共线性假定。假定各解释变量之间不存在线性关系,或各个解释变量观测值之间线性无关。解释变量观测值矩阵列满秩(列)。这是保证多元线性回归模型参数估计值有解
6、的重要条件。3.4答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模型的多重可决系数带来缺陷,所以需要修正。联系:由方差分析可以看出,F检验与可决系数有密切联系,二者都建立在对应变量变差分解的基础上。F统计量也可通过可决系数计算。对方程联合显著性检验的F检验,实际上也是对可决系数的显著性检验。区别:F检验有精确的分布,它可以在给定显著性水平下,给出统计意义上严格的结论。可决系数只能提供一个模糊的推测,可决系数越大,模型对数据的拟合程度就越好。但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准。练习题3.4感觉3.5的数字有误,但是过程可以参考(470895
7、-70895)3.5 已知某商品的需求量(Y)、价格(X2)和消费者收入(X3),下表给出了解释变量和.对Y线性回归方差分析的部分结果: 表3.10 方差分析表变差来源平方和(SS)自由度(df)平方和的均值(MSS)来自回归(ESS)来自残差(RSS)总变差(TSS)377067.19470895.00191)回归模型估计结果的样本容量n、来自回归的平方和(ESS)、回归平方和ESS与残差平方和RSS的自由度各为多少?2)此模型的可决系数和修正的可决系数为多少?3)利用此结果能对模型的检验得出什么结论?能否认为模型中的解释变量和联合起来对某商品的需求量Y的影响是否显著?本例中能否判断两个解释
8、变量和各自对某商品的需求量Y也都有显著影响?【练习题3.5参考解答】:变差来源平方和(SS)自由度(df)平方和的均值(MSS)来自回归(ESS)来自残差(RSS)总变差(TSS)377067.1970895.00447962.193-1=220-3=1719188533.604170.2941 1) n=19+1=20 来自回归的平方和(ESS)的自由度为k-1=3-1=2残差平方和RSS的自由度为 n-k=20-3=17 2) 可决系数=377067.19+70895.00 =447962.19 =3) F=188533.60/4170.2941=45.2087 或者 F=所以可以认为模型
9、中的解释变量和联合起来对某商品的需求量(Y)的影响显著但是,判断判断两个解释变量和.各自对某商品的需求量Y也都有显著影响需要t统计量,而本例中缺t统计量,还不能作出判断。第四章思考题4.1 答:多重共线性包括完全的多重共线性和不完全的多重共线性。多重共线性实质上是样本数据问题,出现了解释变量系数矩阵的线性相关问题。产生多重共线性的经济背景主要有以下几种情形:第一, 经济变量之间具有共同变化趋势。第二,模型中包含滞后变量。第三,利用截面数据建立模型也可能出现多重共线性。第四,样本数据自身的原因。4.5 答:原因是这些变量之间通常具有共同变化的趋势。4.91)答:正确。理由:在高度多重共线性的情形
10、中,没有任何方法能从所给的样本中把存在高度共线性的解释变量的各自影响分解开来,从而也就无法得到单个参数显著性检验的t统计量,因此无法判断单个或多个偏回归系数的单个显著性。2)答:错误。理由:在完全多重共线性情况下,参数估计值的方差无穷大,因此不再是有效估计量,从而BLUE不再成立。3)答:正确。理由:方差扩大因子,当时,方差扩大因子也会很大,说明变量之间多重共线性也会越严重。4)答:正确。理由:较高的简单相关系数只是多重共线性存在的充分条件,而不是必要条件。特别是在多于两个解释变量的回归模型中,有时较低的简单相关系数也可能存在多重共线性,这时就需要检查偏相关系数。因此,并不能简单地依据相关系数
11、进行多重共线性的准确判断。5)答:正确。理由:以二元模型为例,从而方差扩大因子VIF越大,参数估计量的方法越大。6)答:错误。理由:在多元回归模型中,可能会由于多重共线性的存在导致很高的情况下,各个参数单独的t检验却不显著。7)答:正确。理由:根据公式,在两个解释变量线性相关程度一定的情况下,的值很少变化,从而会使得很小,从而增大,如果全部值都相同,趋于零,将是无穷大。8)正确。如果分析的目的仅仅是预测,则多重共线性是无害的。练习题4.2克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y和工资收入X1、非工资非农业收入X2、农业收入X3的时间序列资料,利
12、用OLSE估计得出了下列回归方程:(括号中的数据为相应参数估计量的标准误)。试对上述模型进行评析,指出其中存在的问题。解:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数,F统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F临界值为3.028,计算的F值远大于临界值,表明回归方程是显著的。模型整体拟合程度较高。依据参数估计量及其标准误,可计算出各回归系数估计量的t统计量值:除外,其余的值都很小。工资收入X1的系数的t检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过
13、一美元,这与经济理论和常识不符。另外,理论上非工资非农业收入与农业收入也是消费行为的重要解释变量,但两者的t检验都没有通过。这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。4.5(1)由于第三个解释变量 是和的一个线性组合,所以可能存在多重共线性问题。 (2)如果重新将模型设定为: 我们可以唯一地估计出 ,但不能唯一地估计出 。 (3)由于不再有完全共线性,所有参数都能唯一地估计出来。 (4)答案同(3)第五章练习题5.15.3题5.3参考解答:解: (1)建立样本回归函数。 (0.808709)(15.74411)(2)利用Whi
14、te方法检验异方差,则White检验结果见下表:Heteroskedasticity Test: WhiteF-statistic7.194463Prob. F(2,28)0.0030Obs*R-squared10.52295Prob. Chi-Square(2)0.0052Scaled explained SS30.08105Prob. Chi-Square(2)0.0000由上述结果可知,该模型存在异方差。分析该模型存在异方差的理由是,从数据可以看出,一是截面数据;二是各省市经济发展不平衡,使得一些省市农村居民收入高出其它省市很多,如上海市、北京市、天津市和浙江省等。而有的省就很低,如甘肃
15、省、贵州省、云南省和陕西省等。(3)用加权最小二乘法修正异方差,分别选择权数,经过试算,认为用权数的效果最好。结果如下:书写结果为第六章思考题6.1 答:DW 检验是J.Durbin(杜宾)和G.S.Watson(沃特森)于1951年提出的一种适用于小样本的检验方法,一般的计算机软件都可以计算出DW 值。给定显著水平,依据样本容量n和解释变量个数k,查D.W.表得d统计量的上界du和下界dL,当0ddL时,表明存在一阶正自相关,而且正自相关的程度随d向0的靠近而增强。当dLddu时,表明为不能确定存在自相关。当dud4-du时,表明不存在一阶自相关。当4-dud4-dL时,表明不能确定存在自相
16、关。当4-dLd4时,表明存在一阶负自相关,而且负自相关的程度随d向4的靠近而增强。 DW检验的前提条件:(1)回归模型中含有截距项;(2)解释变量是非随机的(因此与随机扰动项不相关)(3)随机扰动项是一阶线性自相关。 ;(4)回归模型中不把滞后内生变量(前定内生变量)做为解释变量。(5)没有缺失数据,样本比较大。DW检验的局限性:(1)DW检验有两个不能确定的区域,一旦DW值落在这两个区域,就无法判断。这时,只有增大样本容量或选取其他方法 (2)DW统计量的上、下界表要求n15, 这是因为样本如果再小,利用残差就很难对自相关的存在性做出比较正确的诊断(3) DW检验不适应随机误差项具有高阶序
17、列相关的检验.(4) 只适用于有常数项的回归模型并且解释变量中不能含滞后的被解释变量 6.4 (1)答:错误。当回归模型随机误差项有自相关时,普通最小二乘估计量是无偏误的和非有效的。(2)答:错误。DW统计量的构造中并没有要求误差项的方差是同方差 。(3)答:错误。用一阶差分法消除自相关是假定自相关系数为1,即原原模型存在完全一阶正自相关。(4)答:正确。6.5 答:给定显著水平=0.05,依据样本容量n=50和解释变量个数k=4,查D.W.表得d统计量的上界du=1.721,下界dL=1.378,4- du=2.279,4-dL=2.622。(1)DW=1.05dL,所以模型存在正自相关。(
18、2) dLDW=1.40du, 所以模型不能确定是否存在自相关。(3)4- du DW=2.504-dL,所以模型存在负自相关。第八章思考题8.1答:虚拟变量是人工构造的取值为0或1的作为属性变量代表的变量。作用主要有:(1)可以作为属性因素的代表,如性别、所有制等;(2)作为某些非精确计量的数量因素的代表,如受教育程度、管理者素质等;(3)作为某些偶然因素或政策因素的代表,如战争、灾害、改革前后等;(4)可以作为时间序列分析中季节的代表;(5)可以实现分段回归,研究斜率、截距的变动,或比较两个回归模型的结构差异。8.7答:大专以下男性()服装消费模型:大专以下女性()服装消费模型:大专及大专以上男性()服装消费模型:大专及大专以上女性()服装消费模型:练习题8.1
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100