ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:104KB ,
资源ID:3116045      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3116045.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(基于知识的智能问答技术.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于知识的智能问答技术.doc

1、 题目:基于知识的智能问答技术(PDF) 作者:许坤,冯岩松(北京大学) ———————————————————— 作者简介: 许坤,北京大学计算机科学技术研究所博士生,研究方向为基于知识库的智能问答技术,已连续三年在面向结构化知识库的知识问答评测QALD-4, 5, 6中获得第一名。 冯岩松,北京大学计算机科学与技术研究所讲师。2011年毕业于英国爱丁堡大学,获得信息科学博士学位。主要研究方向包括自然语言处理、信息抽取、智能问答以及机器学习在自然语言处理中的应用;研究小组已连续三年在面向结构化知识库的知识问答评测QALD中获得第一名;相关工作已发表在TPAMI、ACL、EMNLP

2、等主流期刊与会议上。作为项目负责人或课题骨干已承担多项国家自然科学基金及科技部863计划项目。分别在 2014 和 2015 年获得 IBM Faculty Award。 引言 近年来,信息抽取技术的快速发展使得快速构建大规模结构化、半结构化知识库成为可能。一大批结构化知识库如雨后春笋般涌现出来,如Google Knolwedge Graph (Freebase)、Yago,DBpedia、微软ProBase、搜狗知立方及百度等企业内部的知识图谱等。 同时,这些大规模知识库也被应用于关联检索、个性化推荐、知识问答等任务中。相比于传统基于文本检索的问答系统,利用知识库回答自然语言问题可以为

3、用户提供更精确、简洁的答案,因此一直受到学术界和工业界的广泛关注。 目前基于知识库的问答技术可以大致分为两类。第一类基于语义解析的方法。这类方法通过学习相关语法将自然语言转问题转换成可以用来描述语义的形式化语言,如逻辑表达式等。构建这样的语义解析器需要大量的标注数据,例如,自然语言问题及其对应的语义描述形式。然而,针对Freebase这样大规模的结构化知识库,在实际中很难收集到足够多的高质量训练数据。另外,语义描述形式与知识库的结构之间的不匹配也是这类方法普遍遇到的一个问题,例如,在Freebase中并没有“爸爸”或“妈妈”这样的谓词关系,只有“父母”,因此,如果想表示 “A 是 B的母亲”

4、这样的关系,则需明确表示为“” 并且 “”。        另一类知识问答技术是传统的基于信息检索的方法。这类方法不会将自然语言问题完全转换成形式化的语义描述,而是首先利用实体链接技术从知识库中收集候选答案集合,然后构建排序模型对候选答案进行排序。因为不需要完整地解析自然语言问题的语义结构,因此,这类方法构造训练数据的过程相对简单,只需收集问题答案对即可。实验表明,基于检索的方法对语义简单的自然语言问题比较有效,但是难以处理语义结构复杂的问题,尤其是包含多个实体和关系的自然语言问题。例如,对于自然语言问题“What mountain is the hig

5、hest in North America?”,检索类的方法由于缺乏对highest的正确解析,通常会将所有坐落在北美的山脉返回给用户。事实上,为了得到正确的答案,问答系统还需要根据山脉高度对候选答案进行排序,并选择海拔最高的山脉返回给用户。该过程通常需要人工编写解析规则对答案进行筛选,费时费力。此外,由于自然语言描述的多样性,人们也无法事先穷举所有这样的规则。        然而事实上,Freebase这样的结构化知识库希望存储关于真实世界的知识条目,而像维基百科页面这样的文本百科资源则存储支持这些事实的文本描述。例如,在维基百科页面中,我们可以找到一段与候选答案有关的文本 Denali

6、 (also known as Mount McKinley, its former official name) is the highest mountain peak in North America, with a summit elevation of 20,310 feet (6,190 m) above sea level。 很明显可以看出,这段文本描述可以帮助我们提升 Denali 或者 Mount McKinley 作为正确答案的置信度,并过滤掉候选集中的错误答案。正是受到这个发现的启发,我们提出同时利用结构化知识库与可信的文本百科资源,如维基百科页面,来回答知识类自然语言

7、问题。 基于多种知识资源的问答技术框架 图1:针对问题who did shaq first play for的流程图 以样例问题 who did shaq first play for的处理流程为例,图1展示了融合多种知识资源的问答框架。该问答系统框架主要包含基于结构化知识库Freebase的问题求解和基于非结构化知识资源Wikipedia文本的浅层推理。 · 基于结构化知识库的问题求解 基于结构化知识资源的问题求解部分只需给出候选答案集合即可,因此既可采用基于语义解析的方法,也可以直接采用基于检索的方法来实现。这里我们采用的是基于检索的方案,主要包括实体链接,关系抽取,以及这两

8、部分的联合消解三大部分。 1)          实体链接 实体链接在知识类问题解析中扮演着十分重要的角色。我们采用词性POS序列来筛选问题中的所有实体候选,以前面的问题为例,我们可以利用POS序列NN识别出实体shaq。对于识别出来的实体候选,我们使用实体链接工具S-MART获取可以潜在链接到Freebase的5个候选实体。具体而言,对给定的实体候选,S-MART首先根据字符串相似度从Freebase中获取一些候选实体,然后利用统计模型根据知识库实体与实体候选之间的共现频率计算出一个得分并排序,最终给出实体链接结果。 2)          关系抽取 关系抽取用于识别问句中的实体与答

9、案(疑问词)之间的语义关系。我们使用多通道卷积神经网络来确定自然语言问题中实体与答案之间存在的关系。具体地讲,我们使用两个通道,一个通道捕捉句法信息,另一个通道捕捉上下文信息。每个通道的卷积层接受一个长度不固定的输入,但是返回一个固定长度的向量(我们使用最大采样法)。这些固定长度的向量被拼接在一起形成最后softmax分类器的输入,该分类器的输出向量维度等于关系类别的总数,每一维的值等于映射到对应知识库谓词的置信度。 3)          实体和关系的联合消歧 通常情况下的实体链接与实体关系抽取都是独立预测的,因而不可避免的会存在流水线框架下常见的错误传递现象。因此,我们提出了一种联合优

10、化模型从实体链接和关系抽取的候选结果中选择一个全局最优的“实体-关系”配置。这个挑选全局最优配置的过程本质上可以被视作一个排序问题,即,“合理”的实体-关系配置在知识库中应更常见,应该有更高的得分。我们主要依赖从知识库中抽取的三类特征,即实体特征、关系特征和答案的特别特征。 · 基于Wikipedia文本描述的浅层推理 基于结构化知识库求解的候选答案集,我们从维基百科文本资源中收集候选答案的支持文本,并训练答案过滤器对候选答案集进行筛选,以得到更准确的答案。 1)          数据预处理 具体地讲,我们首先从维基百科中找出描述自然语言问题中实体的页面。我们抽取维基百科页面的内容,

11、并利用Wikifier识别句子中的维基百科实体,再利用Freebae API将这些实体映射到Freebase中的实体。最后在页面中寻找包含候选答案的句子当做支持文本。 2)          答案过滤模型     我们将浅层推理的过程抽象为一个面向候选答案的二分类任务。在实验中,我们使用LibSVM来训练该二分类器。该分类器主要使用的特征是词级别配对特征,其中第一个部分来自给定的问题,而第二个部分来自维基百科中的支持文本。更形式化地,给定一个问题q = 和一个作为支持文本的句子s = ,其中记q和s中的单词分别为qi和sj。对每个问题与支持文本对(q,s

12、),我们可以生成词级别配对特征集合{(qi,sj)},这些词对出现的次数作为特征用来训练分类器。需要指出的是,这里仅尝试了最简单的二分类方式,主要目的是检验附加文本资源的作用;而使用线性优化、或神经网络等更精巧的融合方式可能会带来更明显的准确率提升。 实验 我们使用WebQuestions数据集进行相关实验。该数据集一共包含5810个自然语言问题以及答案。其中训练集包含3778个问题(65%),测试集包含2032个问题(35%)。我们使用答案的平均F1值来评测本框架。表1给出了不同方法在WebQuestions数据集上的结果。 方法 平均F1 (Bast et al. 2015)

13、49.4 (Berant et al. 2015) 49.7 (Reddy et al. 2016) 50.3 (Yih et al.2015) 52.5 本研究工作 Structured 44.1 Structured + Joint 47.1 Structured + Unstructured 47.0 Structured + Joint + Unstructured 53.3 表1基于关系抽取问答技术在WebQuestions数据集上的结果        为了确定所提出框架中不同模块的重要性,我们详细比较了以下几种模型变种的结果。 Structure

14、d 该方法只包含基于结构化知识库Freebase的问题求解。具体地讲,我们首先进行实体链接,将自然语言问题中包含的实体名词映射到Freebase中的实体,其中得分最高的实体被当做结果。然后我们进行关系抽取并从候选关系中选择与实体最匹配的关系当做最终的实体-关系配置。最后,我们使用这个实体-关系配置来预测问题的答案。 Structured + Joint 与上面的方法略有不同,这个方法使用联合消歧的方法去选择全局最优的实体-关系组合,并进行基于结构化知识库的问题解答。 Structured + Unstructured 这个方法里,我们使用流水线的实体链接和关系抽取结果进行基于结构化知识库的

15、问题求解,进而,利用基于维基百科的浅层推理来筛选答案。 Structured + Joint + Unstructured 这是我们所提出的融合多种知识资源的完整的问答框架。我们首先在结构化知识库Freebase上进行问题求解,即,进行实体链接和关系抽取的联合优化,并在Freebase上获得候选答案集合;在此基础上进行基于文本的浅层推理,即,从维基百科中抽取答案支持文本,并对候选答案进行筛选,获得最终答案。 从表1中的结果,我们可以发现实体链接和关系抽取的联合推理结果会优于流水线方法,整体效果提高了3%,并且比大部分语义解析的方法要好。另一方面,与(Yih et al. 2015)利用人工

16、编写规则的工作相比,融合结构化知识库与文本知识资源的方法在问答准确率上整体提高了0.8%,这进一步说明了恰当的使用非结构化的文本知识资源可以在很大程度上代替人工编写规则来辅助回答自然语言问题。 本文提出的融合不同知识资源的问题解答框架具有较好的可扩展性,无论在结构化知识库求解部分,还是多种资源的融合利用方面都可进一步改进,以更大限度的发挥不同资源之间的互补作用,提高知识类问题的解答精度。 参考文献 · Hannah Bast, Elmar Haussmann. More Accurate Question Answering on Freebase. CIKM. 2015, 1431-1

17、440 · Jonathan Berant, Percy Liang. Imitation Learning of Agenda-based Semantic Parsers[J]. Transactions of the Association for Computational Linguistics. 2015, 3:545–558 · Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das, Mark Steedman, Mirella Lapata. Transforming Depe

18、ndency Structures to Logical Forms for Semantic Parsing[J]. Transactions of the Association for Computational Linguistics. 2016, 4: 127-140 · Kun Xu; Siva Reddy; Yansong Feng; Songfang Huang; Dongyan Zhao Question Answering on Freebase via Relation Extraction and Textual Evidence. ACL 2016, · Kun

19、Xu; Yansong Feng; Songfang Huang; Dongyan Zhao, Hybrid Question Answering over Knowledge Base and Free Text, COLING 2016 · Yi Yang; Ming-Wei Chang, S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking, ACL 2015 ·  Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. Semantic Parsing via Staged Query 
Graph Generation: Question Answering with Knowledge Base[C]. ACL-IJCNLP. 2015,1321-1331 (范文素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服