ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:2.55MB ,
资源ID:3109915      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3109915.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(进口大豆不完善粒鉴别特征综述及展望.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

进口大豆不完善粒鉴别特征综述及展望.pdf

1、Industry Review61XIANDAISHIPIN现代食品行业综述大豆作为我国油脂工业和饲料工业的原材料之一,其需求量在不断增长。由于进口大豆的转基因化和规模化生产,在产量上可以满足我国的需求,且在出油率方面也优于国产大豆,造成人们对于进口大豆的依赖性过高,不利于我国大豆类农作物的发展。大豆可以分为国产大豆和进口大豆,进口大豆粮doi:10.16736/41-1434/ts.2023.14.017作者简介:古争艳(1987),女,硕士,研究方向为油脂油料质量检测。进口大豆不完善粒鉴别特征综述及展望Review and Prospect of Identification Charac

2、teristics of Imported Soybean Imperfect Grain 古争艳1,戚天杰2(1.中央储备粮新郑直属库有限公司,河南 郑州 451100;2.河南工业大学粮食和物资储备学院,河南 郑州 450001)GU Zhengyan1,QI Tianjie2(1.Sinograin Xinzheng Reserve Depot Co.,Ltd.,Zhengzhou 451100,China;2.College of Food and Material Reserves,Henan University of Technology,Zhengzhou 450001,Chi

3、na)摘 要:进口大豆在粮库入库和出库时需要测量多项指标,其中,大豆的损伤粒率和完整粒率是大豆质量指标的必检项,完整粒率是依靠不完善粒的检测间接计算得到。目前,我国对大豆不完善粒的检测主要是采用特征挑选法,需要投入大量的人力和时间,且结果准确度受检测人的经验和主观性的影响,误差较大。因此,本文通过对 30 个试验样品的不完善粒进行挑选的实践操作,总结提炼出各项不完善粒的鉴别特征要点,有助于提高进口大豆不完善粒的准确性。关键词:进口大豆;不完善粒;损伤粒Abstract:Imported soybeans need to measure multiple indicators when ente

4、ring and leaving the grain depot.Among them,the damaged kernel rate and intact kernel rate of soybeans are mandatory inspection items for soybean quality indicators,and the intact kernel rate is calculated indirectly by relying on the detection of imperfect kernels.At present,the detection of imperf

5、ect soybean kernels in my country mainly adopts the feature selection method,which requires a lot of manpower and time,and the accuracy of the results is affected by the experience and subjectivity of the testers,and the error is relatively large.Therefore,through the practical operation of selectin

6、g the imperfect kernels of 30 test samples,this paper summarizes and extracts the key points of identification characteristics of various imperfect kernels,which will help improve the accuracy of detecting soybean imperfect kernels at imported soybean storage points.Keywords:imported soybean;imperfe

7、ct grain;damaged granule中图分类号:R155.562现代食品XIANDAISHIPIN行业综述 Industry Review堆里包含完整粒大豆、杂质和不完善粒大豆,其中,不完善粒主要包括未熟粒、不完善粒和损伤粒;损伤粒又可分为虫蚀粒、病斑粒、热损伤粒、涨大粒、生霉粒、冻伤粒和霉变粒,霉变粒单独计作卫生指标范畴2。有研究证实,损伤粒与大豆质量的关系是非常紧密的。例如,大豆热损现象对于油脂酸价、过氧化值和油脂全氧化值等都有较大的影响1。此外,大豆质量标准中对完整粒率、损伤粒率和热损伤粒率都有明确的限值要求,因此,这 3 项指标的检测准确性至关重要。然而,目前我国完整粒率的

8、检测还是依赖人工挑选出不完善粒,然后分别称量和间接计算。人工挑选方法较仪器检测方法存在较大的主观因素误差,检测结果的准确性不高3。查阅国内外挑选检测类文献发现,质量监测类型的机器、光学检测技术装备和负责挑选分类的半自动化或自动化机器等设备曾经因为造价高、结构复杂等原因在国内外鲜有应用研究。然而,随着近年来现代科学技术的飞速发展,现代仪器设备精度高、速度快、重复性高、前景广阔等优点已经凸显出来,已有学者对机器代替人工的农产品挑选工作进行了探索和研究,因此本文将针对大豆不完善粒检测中不同的现代仪器设备的应用,进行了展望和讨论。1不完善粒的人工挑选方法进口大豆主要有 3 大类不完善粒。第 1 类是不

9、完善粒,是指完整度在 75%以下的大豆;第 2 类是未熟粒,是指在生产过程中由于各种因素导致的具有发青干瘪等特点的大豆;第 3 类是损伤粒,是指在生长或者运输过程中由于各种原因而导致的大豆损伤。损伤粒又可以细分为病斑粒、生霉粒、热损伤粒、虫蚀粒和涨大粒等,如图 1 所示。人工挑选方法为:将去除大杂后的进口大豆样品约 100 g 倒入白瓷盘中,先用毛刷将豆皮挑选出来放置杂质盒中,再挑选出占比最大的不完善粒,然后按照大豆表皮特征快速识别出病斑粒、热损伤粒、生霉粒等,分别放入带有分类名称标记的铝盒中,最后使用刀片剖皮和切片方式查看子叶情况鉴别疑似大豆,反复检查直至白瓷盘中剩余大豆颗粒均为完整粒为止。

10、人工挑选操作的难点在于需要剖开问题大豆的表皮,观察内部子叶的实际情况,由于根据表皮颜色和形态的判断有时具有误导性,例如,某些表皮显示异常的大豆,其子叶可能很完整,属于正常粮粒;而某些表皮正常的大豆,其子叶内部也可能不完整,则属于损伤粒。因此,通过剥落大豆的表皮、观察子叶的内部情况,才能保证大豆不漏检和不错检,进而保证结果的准确性4-6。图 1进口大豆不完善粒和杂质图2不完善粒分类及特征2.1病斑粒图 2 是病斑粒的图片,病斑大豆是由于大豆感染某些病菌使得大豆颜色异常,有明显的发黑凹陷,某些表皮正常的大豆内部是发黑发褐的,也属于病斑粒。图 2进口大豆病斑粒实物展示图Industry Review

11、63XIANDAISHIPIN现代食品行业综述2.2未熟粒未熟粒的特征为颜色发青(体积占 1/2)或者表皮瘪缩(表面积占 1/2),观察外表有的存在凹陷,类似于缺水的样子,同样,有些外皮颜色正常的大豆,将其刨开之后,内部颜色也有发青发绿,这种也属于未熟粒。2.3热损伤粒 如图 3 所示,进口大豆热损伤粒实物比正常大豆偏红,大多数为红褐色,也有些表皮颜色正常,而内部呈现偏红色,此类属于热损伤粒。有个别存在表皮红色,内部呈现正常颜色则不属于热损伤。图 3 进口大豆热损伤粒实物展示图2.4虫蚀粒图 4 是虫蛀粒,进口大豆虫蛀粒数量比较少,但是特征比较容易区分,其上面有明显的虫蛀的小洞和痕迹,大多数虫

12、蛀粒也是病斑粒,均归属于损伤粒里,以虫蛀的洞口为区分。图 4进口大豆虫蚀粒实物展示图2.5生霉粒图 5 是生霉粒的展示图,生霉粒的表面一般伴随着肉眼可见的霉斑、霉块等,颜色一般有白色、灰色和黑色等,其与病斑的区分较为困难,需要仔细观察,大多数生霉的大豆只有部分生霉点,而不会大面积生霉,外观常常伴随着毛感。图 5进口大豆生霉粒实物展示图3常见的筛选不完善粒方法3.1直径筛选法通过手工对 30 个试验样品进行不完善粒挑选,总结发现:总时间为 100%的条件下,挑选不完善粒花费的时间约占 40%,热损伤粒花费时间约占 10%,未熟粒挑选时间约占 20%,生霉粒和病斑粒挑选时间也都约为 10%。可见,

13、不完善粒的挑选虽然最易判别,但耗时最多。由于不完善粒与完整粒的外形差距较大,可以考虑采用直径筛选的方法。然而,由于不完善粒的特殊形状7-9,部分不完善粒的最大直径和完整粒相同,非常容易卡住筛口,效率非常低,常常筛了几遍还没有将完整粒粒和不完善粒分开。因此,本次研究中我们淘汰了这种筛选办法。此外,国内外文献资料还能够查到风力筛选和圆周滑落等筛选方法,但效率都不高10-12。3.2斜面法具体操作方法是:将大豆样品置于一个斜面顶端并使其滑落下来,完整粒由于表面光滑阻力小能够滑到斜面底部,而不完善粒因其不规则形状,则会停在斜面中间的位置,从而将破碎豆快速分离。对此,设计一个小型的斜面机,就可以实现实验

14、室的便携操作。3.3人工手扒法通过对比镊子挑选和人工手扒挑选法发现,镊64现代食品XIANDAISHIPIN行业综述 Industry Review子挑选由于要逐一夹取颗粒并放入容器,费时又费力。而手扒挑选法是指尖将破碎豆划到白瓷盘一边,一次可以扒取几粒至几十粒不等,大大节省了挑选时间。3.4挑选顺序优化通过人工手扒法将不完善粒挑选出来之后,建议优先挑选未熟粒,因为未熟粒的表皮颜色一般偏青偏绿,相对容易观测,然后是生霉粒,表皮一般具有发白、发灰的毛斑状,接下来挑选表皮颜色较重的大豆颗粒,将其刨开之后观察子叶颜色,如果发红可判定为热损伤粒、发黑则是病斑粒,这样就可以把复杂的挑选过程简化为青、红、

15、黑 3 种颜色的挑选,可以提高效率和准确性。在挑选过程中,要注意辨别虫蚀粒,虫蚀粒的特点(表皮有孔洞)比未熟粒更明显,但是在进口大豆中很少见到,如果发现虫蚀粒,则可以直接进行分类。4现代技术在挑选不完善粒中的应用4.1近红外光谱技术方法崔丽霞13设计了一种近红外光谱技术(波段范围9001 700 nm)和电气联动的马铃薯缺陷检测分选装置,可同时实现 2 种内部缺陷检测(马铃薯黑心病和环腐病)和分选剔除。该装置由微型近红外光谱仪、输送系统、剔除系统和 PLC 控制系统组成,微型近红外光谱仪可实现马铃薯内部缺陷无损检测;输送系统利用电动滚筒和皮带实现马铃薯输送;剔除系统利用气动元器件实现缺陷马铃薯

16、剔除;PLC 控制系统控制装置运行以完成缺陷马铃薯检测及分选。因此,将近红外光谱技术应用到大豆内部缺陷无损检测中,可以检测并分选出未熟粒、病斑粒、热损伤粒、冻伤粒和生霉粒等不完善粒。4.2图像视觉处理技术刘福华14研究了基于机器视觉的水果分级分拣系统关键技术,研究表明,利用机器视觉测量具有精度高、结果稳定可靠和非接触性等优点,通过对苹果进行尺寸测量、空间定位,并根据果形大小、色泽光洁程度和表面缺陷等指标进行特征识别,可以实现对苹果品质的科学精准分级和自动分拣。由此可见,建立大豆不完善粒图像数据库,然后通过摄像技术呈现待检大豆颗粒图像,与数据库的信息比对进行判定,为大豆不完善粒快检设备提供了设计

17、思路。4.3颜色监控仪器技术通过查阅文献可知,在花生的品质监控挑选中,运用到了颜色监控仪器,实现了全自动化监管和挑选,降低了人工成本。但是考虑到大豆的大小和精度要求比花生精细得多,所需要自动化的技术支撑就更高,其造价也较高,因而无法进行颜色监控。5结语本研究经过对 30 个试验样品的人工挑选得知,人工挑选的成本较大且效率较低。未来,相信通过采用斜面机、近红外扫描仪和图像视觉处理技术等方法,可以大大提高进口大豆不完善粒的挑选效率,有效降低人工成本。参考文献1 黄留敏,王宏平,席天明,等.不同热损程度大豆油脂品质及组成分析 J.食品安全质量检测学报,2023,14(2):122-129.2 中华人

18、民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.大豆:GB 13522009S.北京:中国标准出版社,2009.3 丁然.基于随机森林大豆籽外观品质识别系统设计与实现 D.哈尔滨:东北农业大学,2015.4 黄双根,黄大星,刘木华,等.鸡蛋物理特性检测自动化控制系统的设计J.农机化研究,2010,32(3):125-126.5 元晓彤.霉变花生高光谱图像识别方法研究 D.徐州:中国矿业大学,2020.6 李昌宝,辛明,李丽,等.百香果自动化分选系统软件 V1.0EB/OL.(2019-11-12)2023-05-03.https:/ 徐道际.基于物联网的精准农业光电分选设备产业化关

19、键技术研究 EB/OL.(2020-10-01)2023-05-03.https:/ Review65XIANDAISHIPIN现代食品行业综述4p_H5157itHVzbzj735XtTfF_z5peEpU-qurQdDmPu6PVnUpPdEIW5YtyMg7HFaw94DJjidc7uLZfjfq72dYGa&uniplatform=NZKPT.8 潘雪峰,张文爱,王秀,等.果蔬类种子自动分选机控制系统的设计 J.江苏农业科技,2018,46(3):185-188.9 朱 壹,朱 二.一 种 半 自 动 水 果 筛 选 机 EB/OL.(2020-06-05)2023-05-03.https:/ 崔丽霞,王相友,许英超.基于响应面法的马铃薯分选机参数优化及试验 J.中国农机化学报,2021,42(11):80-88.11 刘世.红枣自动分级设备的设计与研究 D.咸阳:西北农林科技大学,2012.12 郭帅,郭艳玲,鲍玉冬.蓝莓采摘机风力分选系统仿真研究 J.安徽农业科技,2014,42(19):6452-6454.13 崔丽霞.基于近红外光谱技术的马铃薯内部病害检测及试验 D.淄博:山东理工大学,2021.14 刘福华.基于机器视觉的水果分级分拣系统关键技术研究 J.机电信息,2021(28):56-57.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服