1、最小二乘法公式 (X-X平)(Y-Y平) =(XY-X平Y-XY平+X平Y平) =XY-X平Y-Y平X+nX平Y平 =XY-nX平Y平-nX平Y平+nX平Y平 =XY-nX平Y平 (X -X平)2 =(X2-2XX平+X平2) =X2-2nX平2+nX平2 =X2-nX平2 最小二乘公式(针对y=ax+b形式)a=(Nxy-xy)/(Nx2-(x)2) b=y(平均)-ax(平均) 最小二乘法在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2). (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直
2、线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用最小二乘法原理,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和(Yi - Y计)²最小为“优化判据”。 令: = (Yi - Y计)² (式1-2) 把(式1-1)代入(式1-2)中得: = (Yi - a0 - a1 Xi)2 (式1-3) 当(Yi-Y计)²最小时,可用函数 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即m a0 + (
3、Xi ) a1 = Yi (式1-6) (Xi ) a0 + (Xi2 ) a1 = (Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (Yi) / m - a1(Xi) / m (式1-8) a1 = Xi Yi - (Xi Yi)/ m / Xi2 - (Xi)2 / m) (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2.xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统
4、计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = XiYi - m (Xi / m)(Yi / m)/ SQRXi2 - m (Xi / m)2Yi2 - m (Yi / m)2 (式1-10) 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式
5、. 假定实验测得变量之间的 个数据 , , , , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来
6、代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法. 由极值原理得 , 即 解此联立方程得 (*) 问题 I 为研究某一化学反应过程中, 温度 )对产品得率 ()的影响, 测得数据如下: 温度 ) 100 110 120 130 140 150 160 170 180 190 得率 () 45 51 54 61 66 70 74 78 85 89 (1) 利用“ListPlot”函数, 绘出数据 的散点图(采用格式: List
7、Plot , , , , Prolog-AbsolutePointSize3 ); (2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: ShowGraphicsLine , , , , Axes-True ) ; (3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式 ; (程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示 和 . 集合A元素求和: ApplyPlus,A 表示将加法施加到集合A上, 即各元素相加, 例如ApplyPl
8、us,1,2,3=6;LengthA表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.) (4) 在同一张图中显示直线 及散点图; (5) 估计温度为200时产品得率. 然而, 不少实际问题的观测数据 , , , 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达 与 的相互关系. 问题 II 下表是美国旧轿车价格的调查资料, 今以 表示轿车的使用年数, (美元)表示相应的平均价格, 求 与 之间的关系. 使用年数1 2 3 4 5 6 7 8 9 10 平
9、均价格2651 1943 1494 1087 765 538 484 290 226 204 (1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征? (2) 令 , 绘出数据 的散点图, 注意观察有何特征? (3) 利用“Line”函数, 将散点 连接起来, 说明有何特征? (4) 利用最小二乘法, 求 与 之间的关系; (5) 求 与 之间的关系; (6) 在同一张图中显示散点图 及 关于 的图形. 思考与练习1. 假设一组数据 : , , , 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验. 注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为: 先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如 (A即为矩阵 ) = (数据A的第一个分量集合) = (数据A的第二个分量集合) B-C表示集合B与C对应元素相减所得的集合, 如 = . 2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100