ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:19KB ,
资源ID:3109204      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3109204.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(最小二乘法公式.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

最小二乘法公式.doc

1、   最小二乘法公式   ∑(X--X平)(Y--Y平)   =∑(XY--X平Y--XY平+X平Y平)   =∑XY--X平∑Y--Y平∑X+nX平Y平   =∑XY--nX平Y平--nX平Y平+nX平Y平   =∑XY--nX平Y平   ∑(X --X平)^2   =∑(X^2--2XX平+X平^2)   =∑X^2--2nX平^2+nX平^2   =∑X^2--nX平^2 最小二乘公式(针对y=ax+b形式)   a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)   b=y(平均)-ax(平均) 最小二乘法   在我们

2、研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。   Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。   令: φ = ∑(Yi - Y计)²

3、式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)²最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5) 亦即   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式

4、1-8)   a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。   在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。   R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ S

5、QR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *   在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法   从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大

6、致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.   考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题

7、归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.   由极值原理得 , 即   解此联立方程得   (*)   问题 I 为研究某一化学反应过程中, 温度 ℃)对产品得率 (%)的影响, 测得数据如下:   温度 ℃)   100 110 120 130 140 150 160 170 180 190   得率 (%)   45 51 54 61 66 70 74 78 85 89   (1) 利用“ListPlot”函数, 绘出数据 的散点图(采用格式: ListPlot[{ , , …, }, Prolog->A

8、bsolutePointSize[3]] );   (2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: Show[Graphics[Line[{ , , …, }]] , Axes->True ]) ;   (3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式 ;   (程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示 和 . 集合A元素求和: Apply[Plus,A] 表示将加法施加到集合A上, 即各元素相加, 例如

9、Apply[Plus,{1,2,3}]=6;Length[A]表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.)   (4) 在同一张图中显示直线 及散点图;   (5) 估计温度为200时产品得率.   然而, 不少实际问题的观测数据 , , …, 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达 与 的相互关系.   问题 II 下表是美国旧轿车价格的调查资料, 今以 表示轿车的使用年数, (美元)表示相应的平均价格, 求 与 之间的

10、关系. 使用年数   1 2 3 4 5 6 7 8 9 10 平均价格   2651 1943 1494 1087 765 538 484 290 226 204   (1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?   (2) 令 , 绘出数据 的散点图, 注意观察有何特征?   (3) 利用“Line”函数, 将散点 连接起来, 说明有何特征?   (4) 利用最小二乘法, 求 与 之间的关系;   (5) 求 与 之间的关系;   (6) 在同一张图中显示散点图 及 关于 的图形. 思考与练习   1.

11、假设一组数据 : , , …, 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验.   注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为:   先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如   (A即为矩阵 )   = (数据A的第一个分量集合)   = (数据A的第二个分量集合)   B-C表示集合B与C对应元素相减所得的集合, 如 = .   2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服