ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.53MB ,
资源ID:3089310      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3089310.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(1992考研数学三真题及全面解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1992考研数学三真题及全面解析.doc

1、1992年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 设商品的需求函数为,其中分别表示为需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_.(2) 级数的收敛域为_.(3) 交换积分次序_.(4) 设为阶方阵,为阶方阵,且,则_.(5) 将等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE的概率为_.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设,其中为连续函数,则等于 ( )(A) (B

2、) (C) 0 (D) 不存在(2) 当时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量? ( )(A) (B) (C) (D) (3) 设为矩阵,齐次线性方程组仅有零解的充分条件是 ( )(A) 的列向量线性无关 (B) 的列向量线性相关(C) 的行向量线性无关 (D) 的行向量线性相关(4) 设当事件与同时发生时,事件必发生,则 ( )(A) (B) (C) (D) (5) 设个随机变量独立同分布,则 ( )(A) 是的无偏估计量 (B) 是的最大似然估计量(C) 是的相合估计量(即一致估计量) (D) 与相互独立三、(本题满分5分)设函数问函数在处是否连续?若不连续,修改函数在

3、处的定义使之连续.四、(本题满分5分)计算五、(本题满分5分)设,求,其中有二阶偏导数.六、(本题满分5分)求连续函数,使它满足.七、(本题满分6分)求证:当时,.八、(本题满分9分)设曲线方程.(1) 把曲线,轴,轴和直线所围成平面图形绕轴旋转一周,得一旋转体,求此旋转体体积;求满足的.(2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.九、(本题满分7分)设矩阵与相似,其中.(1) 求和的值.(2) 求可逆矩阵,使得.十、(本题满分6分)已知三阶矩阵,且的每一个列向量都是以下方程组的解:(1) 求的值; (2) 证明.十一、(本题满分6分)设分别为阶正

4、定矩阵,试判定分块矩阵是否是正定矩阵.十二、(本题满分7分)假设测量的随机误差,试求100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率,并利用泊松分布求出的近似值(要求小数点后取两位有效数字).附表1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 十三、(本题满分5分)一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以表示同时需要调整的部件数,试求的数学期望和方差.十四、(本题满分4分)设二维随机变量的概率密度为(1) 求随机变量的密度; (2)

5、 求概率.1992年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分.)(1)【答案】【解析】根据,得价格,又由得,按照经济学需求弹性的定义,有,令,解得.所以商品价格的取值范围是.(2)【答案】【解析】因题设的幂级数是缺项幂级数,故可直接用比值判别法讨论其收敛性.首先当即时级数收敛.当时,后项比前项取绝对值求极限有当,即当或时级数绝对收敛.又当和时得正项级数,由级数:当时收敛;当时发散.所以正项级数是发散的.综合可得级数的收敛域是.注:本题也可作换元后,按如下通常求收敛半径的办法讨论幂级数的收敛性.【相关知识点】收敛半径的求法:如果,其中是幂级数的相邻

6、两项的系数,则这幂级数的收敛半径 (3)【答案】【解析】这是一个二重积分的累次积分,改换积分次序时,先表成:原式由累次积分的内外层积分限确定积分区域:, 即中最低点的纵坐标,最高点的纵坐标,的左边界的方程是,即的右支,的右边界的方程是即的右半圆,从而画出的图形如图中的阴影部分,从图形可见,且所以(4)【答案】【解析】由拉普拉斯展开式, .【相关知识点】两种特殊的拉普拉斯展开式:设是阶矩阵,是阶矩阵,则 .(5)【答案】【解析】按古典概型求出基本事件总数和有利的基本事件即可. 设所求概率为,易见,这是一个古典型概率的计算问题,将给出的七个字母任意排成一行,其全部的等可能排法为7!种,即基本事件总

7、数为,而有利于事件的样本点数为,即有利事件的基本事件数为4,根据古典概型公式.二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(B)【解析】方法1:为“”型的极限未定式,又分子分母在点处导数都存在,所以可应用洛必达法则. .故应选(B).方法2: 特殊值法.取,则.显然(A),(C),(D)均不正确,故选(B).【相关知识点】对积分上限的函数的求导公式:若,均一阶可导,则.(2)【答案】(D)【解析】由于时,故是同阶无穷小,可见应选(D).(3)【答案】(A)【解析】齐次方程组只有零解.由于的行秩的列秩,现是矩阵,即的列向量线性无关.故应选(A).【相关知识点】对齐次线性方程

8、组,有定理如下:对矩阵按列分块,有,则的向量形式为那么, 有非零解线性相关 (4)【答案】(B)【解析】依题意:由“当事件与同时发生时,事件必发生”得出,故;由概率的广义加法公式推出;又由概率的性质,我们得出,因此应选(B).(5)【答案】(C)【解析】根据简单随机样本的性质,可以将视为取自方差为的某总体的简单随机样本,与是样本均值与样本方差.由于样本方差是总体方差的无偏估计量,因此,否则若,则,.故不能选(A).对于正态总体, 与相互独立,由于总体的分布未知,不能选(D).同样因总体分布未知,也不能选(B).综上分析,应选(C).进一步分析,由于样本方差是的一致估计量,其连续函数一定也是的一

9、致估计量.三、(本题满分5分)【解析】函数在处连续,则要求.方法1:利用洛必达法则求极限,因为为“”型的极限未定式,又分子分母在点处导数都存在,所以连续应用两次洛必达法则,有 .而,故,所以在处不连续.若令,则函数在处连续.方法2:利用变量代换与等价无穷小代换,时,;.求极限,令,则有 .以下同方法1.四、(本题满分5分)【解析】用分部积分法:, 其中为任意常数.注:分部积分法的关键是要选好谁先进入积分号的问题,如果选择不当可能引起更繁杂的计算,最后甚至算不出结果来.在做题的时候应该好好总结,积累经验.【相关知识点】分部积分公式:假定与均具有连续的导函数,则 或者 五、(本题满分5分)【解析】

10、这是带抽象函数记号的复合函数的二阶混合偏导数,重要的是要分清函数是如何复合的.由于混合偏导数在连续条件下与求导次序无关,所以本题可以先求,再求.由复合函数求导法,首先求,由题设 ,再对求偏导数,即得 .【相关知识点】多元复合函数求导法则:如果函数都在点具有对及对的偏导数,函数在对应点具有连续偏导数,则复合函数在点的两个偏导数存在,且有;.六、(本题满分5分)【解析】两端对求导,得.记,有通解,其中为任意常数.由原方程易见,代入求得参数.从而所求函数.【相关知识点】一阶线性非齐次方程的通解为 , 其中为任意常数.七、(本题满分6分)【解析】方法1:令,则.因为在连续,所以在上为常数,因为常数的导

11、数恒为0.故,即. 方法2:令,则在上连续,在内可导,由拉格朗日中值定理知,至少存在一点,使得由复合函数求导法则,得 ,所以.由可得,当时,.【相关知识点】复合函数求导法则:如果在点可导,而在点可导,则复合函数在点可导,且其导数为 或 .八、(本题满分9分)【解析】对于问题(1),先利用定积分求旋转体的公式求,并求出极限.问题(2)是导数在求最值中的应用,首先建立目标函数,即面积函数,然后求最大值.(1)将曲线表成是的函数,套用旋转体体积公式.由题设知,得.(2) 过曲线上已知点的切线方程为,其中当存在时, .设切点为,则切线方程为.令,得,令,得.由三角形面积计算公式,有切线与两个坐标轴夹的

12、面积为.因令得(舍去).由于当时,;当时,.故当时,面积有极大值,此问题中即为最大值.故所求切点是,最大面积为 .【相关知识点】由连续曲线、直线及轴所围成的曲边梯形绕轴旋转一周所得的旋转体体积为:.九、(本题满分7分)【解析】因为,故可用相似矩阵的性质建立方程组来求解参数和的值.若,则是的特征向量.求可逆矩阵就是求的特征向量.(1) 因为,故其特征多项式相同,即即.由于是的多项式,由的任意性,令,得. 令,得.由上两式解出与.(2) 由(1)知.因为恰好是对角阵,所以马上可得出矩阵的特征值,矩阵的特征值是.当时,由,得到属于特征值的特征向量. 当时,由,得到属于特征值的特征向量.当时,由,.得

13、到属于特征值的特征向量.那么令,有.十、(本题满分6分)【解析】对于条件应当有两个思路:一是的列向量是齐次方程组的解;另一个是秩的信息即.要有这两种思考问题的意识.(1) 方法1:令,对3阶矩阵,由,知必有,否则可逆,从而,这与矛盾. 故,用行列式的等价变换,将第三列加到第二列上,再按第二列展开,有.解出.方法2:因为,故中至少有一个非零列向量.依题意,所给齐次方程组有非零解,得系数矩阵的列向量组线性相关,于是,以下同方法一.(2) 反证法:对于,若,则可逆,那么.与已知条件矛盾.故假设不成立,.【相关知识点】对齐次线性方程组,有定理如下:对矩阵按列分块,有,则的向量形式为那么, 有非零解 线

14、性相关 对矩阵按列分块,记,那么.因而,即是的解.十一、(本题满分6分)【解析】在证明一个矩阵是正定矩阵时,不要忘记验证该矩阵是对称的.方法1:定义法.因为均为正定矩阵,由正定矩阵的性质,故,那么,即是对称矩阵.设维列向量,其中,若,则不同时为0,不妨设,因为是正定矩阵,所以.又因为是正定矩阵,故对任意的维向量,恒有.于是,即是正定二次型,因此是正定矩阵.方法2:用正定的充分必要条件是特征值大于0,这是证明正定时很常用的一种方法.因为均为正定矩阵,由正定矩阵的性质,故,那么,即是对称矩阵.设的特征值是的特征值是由均正定,知.因为于是,矩阵的特征值为因为的特征值全大于0,所以矩阵正定.十二、(本

15、题满分7分)【解析】设事件“每次测量中测量误差的绝对值大于19.6”,因为 ,即.根据正态分布的性质则有:.设为100次独立重复测量中事件出现的次数,则服从参数为的二项分布.根据二项分布的定义,则至少有三次测量误差的绝对值大于19.6的概率为:.根据泊松定理,对于成功率为的重伯努利试验,只要独立重复试验的次数充分大,而相当小(一般要求),则其成功次数可以认为近似服从参数为的泊松分布,具体应用模式为若,则当充分大,相当小时当近似服从参数为的泊松分布,即 .设为100次独立重复测量中事件出现的次数,则服从参数为的二项分布.故.十三、(本题满分5分)【解析】令随机变量.依题意相互独立,且分别服从参数

16、为0.1,0.2,0.3的分布,即01 0.90.1 010.80.2010.70.3由题意知,显然的所有可能取值为0,1,2,3,又相互独立, 所以(1) , .由得出 因此的概率分布为01230.5040.3980.0920.006(2)令因均服从分布,故所以,.因服从分布, 且相互独立,故由数学期望与方差的性质 .注:的期望与方差也可以直接用期望与方差的公式来计算:十四、(本题满分4分)【解析】(1)已知联合概率密度可以直接利用求边缘密度的公式求出边缘概率密度.当时,;当时,.因此的密度为11(2) 概率实际上是计算一个二重积分,根据概率的计算公式:,再由二重积分的计算,化为累计积分求得概率. (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服