ImageVerifierCode 换一换
格式:DOC , 页数:35 ,大小:891KB ,
资源ID:3087793      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3087793.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(-【数字图像处理】期末复习资料及期末模拟试卷(含答案)doc.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

-【数字图像处理】期末复习资料及期末模拟试卷(含答案)doc.doc

1、Digital Image Processing Examination 1. Fourier Transform problem. 1) For an image given by the function f(x,y)=(x+y)3 where x,y are continuous varibales; evaluate f(x,y)(x-1,y-2) and f(x,y)* (x-1,y-2),where is the Dorac Delta function.2) For the optical imaging system shoen below,consisting of an i

2、mage scaling and two forward Fourier transforms show that the output image is a scale and inverted replica of the original image f(x,y).f(x,y)Scalingf(ax,by)FFg(x,y)_3) three binary images (with value 1 on black areas and value 0 elsewhere) are shown below. Sketch the continuous 2D FT of these image

3、s(dont do this mathematically, try to use instead the convolution theorem and knowledge of FTs of common functions)2. The rate distortion function of a zero memory Gaussian source of arbitary mean and variance 2 with respect to the mean-square error criterion isa) Plot this functionb) What is Dmaxc)

4、 If a distortion of no mor than 75% of the sources variance is allowed, what is the maximum compression that can be achieved?3. The PDF of an image is given by Pr(r) as shown below. Find the transform toconvert the images PDF to Pr(z). Assume continuity, and find the transform in terms of r and z. E

5、xplain the transformation.4. A certain inspection application gathers black & white images of parts as they travel along a conveyor belt. It is necessary to sort the parts into two categories: parts with holes and parts with-out holes. An example of an image that might be taken by the inspection cam

6、era is shown at the right.Propose a method to identify and locate the objects of each category in the image so that they can be picked up by a robotic system and placed in different bins. Assume that the imaging system knows where each image pixel is located on the conveyor belt at every point in ti

7、me.Provide an annotated flow chart of the algorithm you propose.5. In a given application, an averaging mask is applied to input images to reduce noise and then a Laplacian mask is applied to enhance small details. Would mathematics predict that the result should be the same if the order of the oper

8、ations were reversed? What practical issues would be encountered in computer implementation?Digital Image Processing Examination1. A preprocessing step in an application of microscopy is concerned with the issue of isolating individual round particles from similar particles that overlap in groups of

9、 two or more.Assuming that all particles are of the same size, propose a morphological algorithm that will produce an image that contains only the isolated (non-overlapping) particles that are not in contact with the boundary of the image.2. An image represented by a continuous function f(x, y) is w

10、 = 2 cm wide and h = 3 cm high. The image is to be converted to an array of pixels by a scanner whose response is zero above 80 lines/centimeter in both the horizontal and vertical directions. The discrete image is represented by an array f(n, m) where n and m take on integer values, 0 n N - 1, 0 m

11、M-1.(a) Determine suitable values for N and M.(b) Assume that f(n, m) = f(na, mb). Determine the values of a and b.(c) Determine constants A, B, C, D, E such that the DFT of f can be expressed as(d) Find numbers (P1, P2) such that F(u + jP1, v + kP2) = F(u, v) for any integers j, k, u, v.3. The arit

12、hmetic decoding process is the reverse of the encoding procedure. Decode the message 0.23355 given the coding model. SymbolProbabilitya0.2e0.3i0.1o0.2u0.1!0.14. The gradient of a function f (x) is defined asComputationally, the first derivative is implemented by calculating the difference between ad

13、jacent pixels.(a) Is the following a linear operator?(b) State how would you implement the above operator using differences between pixels.(c) A Sobel operator uses two masks, Hx and Hy to process an image. Explain why are two masks needed and what do they measure?(d) Write down the masks Hx and Hy,

14、 and identify them in the following figures:5. The three images shown were blurred using square averaging masks of sizes n=23, 25 , and 45, respectively. The vertical bars on the left lower part of (a) and (c) are blurred, but a clear separation exists between them. However, the bars have merged in

15、image (b), in spite of the fact that the mask that produced this image is significantly smaller than the mask that produced image (c). explain this.Digital Image Processing Examination1. An image array f(m, n) of size M1 N1 is to be convolved with a filter array h(m, n) of size M2 N2 to produce a ne

16、w image array g(m, n).1) Write a pseudo code program that describes a method to compute g(m, n) through the use of Fourier transforms. The result should be the same size as would be achieved with direct convolution.2) Modify the algorithm so that it does the correlation f h rather than the convoluti

17、on.2. You have the job of designing an algorithm that will count the number of objects with holes and the number of objects without holes in images of the kind shown here. Assume that the images are binary with 0 corresponding to black and 1 corresponding to white. The imaging system is of low quali

18、ty and produces images that are corrupted with salt and pepper noise.The objects do not overlap or touch, but may be close to each other in any direction. They may be of any shape or size. The algorithm should not be confused by the salt and pepper noise, and should not count noise pixels as objects

19、.Write a pseudo-code description of your algorithm. You may also include a block diagram and other information to make it understandable to a programmer. State any assumptions you make, such as: “Objects must contain at least 50 pixels.”least 50 pixels.”3. Suppose that an image has the gray-level pr

20、obability density functions shown. Here, p1(z) corresponds to objects and p2(z) corresponds to the background. Assume that p1=p2 and find the optimal threshold between object and back ground pixels.4. The Sobel operator computes the following quantity at each location (x, y) in an image array, A:Gxj

21、,k=(Aj+1,k+1+2Aj+1,k+Aj+1,k-1)-(Aj-1,k+1+2Aj-1,k+Aj-1,k-1) Gyj,k=(Aj-1,k-1+2Aj,k-1+Aj+1,k-1)-(Aj-1,k+1+2Aj,k+1+Aj+1,k+1) Gj,k = |Gxj,k| + |Gyj,k|The position of Aj, k is column j and row k of the array.The operation is implemented as the convolution of the image array A with two masks, Mx and My fol

22、lowed by the magnitude operation.1) Write a 3 3 array for each mask, Mx and My.2) What mathematical operation on an image array is approximated by the Sobel operator? Show how the Sobel operator is related to the mathematical operation.5. Answer the following questions about morphological image proc

23、essing.(a) Shown below are two tables with expressions that relate to binary morphological image processing. Associate each expression in the left table with one from the right table. (b) A well-known morphological algorithm uses the following iteration with a structuring element B.(1) Initialize Xp

24、 = 1 for some pixel (2)(3) If then set X = Y and repeat (2)An original set A is shown in (A) and an initial pixel p 2 A is shown in (B). The result after one iteration of the algorithm with structuring elementis shown in (C). Fill in the result of the next two iterations by marking the appropriate p

25、ixels for the set Y in (D) and (E). In frame (F) show the result for Y that would be reached after a large number of iterations.Digital Image Processing Examination1. Consider the edge model depicted below. Sketch the gradient and Laplacian of the signal. It is not needed to compute exact numerical

26、values in your answer. Plot of approximate shapes of the responses will be sufficient.2. The white bars in the test pattern shown are 7pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of .1) A 3*3 arithmetic mean filter?2) A

27、 7*7 median filter.3) A 9*9 contraharmonic mean filter with Q=13. The video coding system introduced in the class utilizes several major components inter-frame motion estimation, motion compensated prediction, DCT, Huffman coding, and quantization.(a) When an encoded signal can be used to reconstruc

28、t the exact value of the original signal, we say the encoding method is lossless; otherwise, its called lossy. A lossy coding technique introduces distortion to the signal.Which component in the above video coding system is lossy?(b) The motion compensation process in the encoder generates a motion

29、vector and prediction errors for each image block in the video signal. Suppose during the transmission of the encoded video stream, one motion vector is lost (e.g., due to the network erasure error). What will be the visual effects of such transmission errors on the decoded image sequence?4.Consider

30、 a black-and-white image consisting of round and rectangular objects, as shown in the image below. Assume the sizes of the objects are fixed and known. We also know that the width and length of the rectangles are larger than the diameter of the circles. None of the rectangles are tilted. In general,

31、 the objects may overlap with each other.Design a morphological operation based system to automatically detect all the instances of the rounds objects that overlap with rectangular objects.5. An image A, represented by an N M array of bytes, has a uniform brightness histogram. It is desired transfor

32、m A into an image B in a way that produces a triangular brightness histogramDescribe a process that will accomplish the transformation. If possible, derive an equation for the transformation function. At a minimum, sketch the transformation function and indicate how you would use it in a program to

33、compute the array B.模拟试卷一1.对将一个像素宽度的8通路转换到4通路提出一种算法。2.(A)试提出一种过程来求一个 邻域的中值?(B)试提出一种技术,逐像素地移动领域的中心来更新中值。(会了)3.证明如式 所示的拉普拉斯变换是各向同性的(旋转不变)。需要下列轴旋转 角的坐标方程: 其中 为非旋转坐标,而 为旋转坐标。4.获得对应于式子 到式子 的带阻滤波器的带通滤波器的等式。5.给定 的图象,那么一个 级金字塔是减少还是增加了表示图象所需的数据量?压缩或扩展率是多少?6.考虑灰度级数据12,12,13,13,10,13,57,54的一条8像素的线。这条线已经经过精度为6比

34、特的均匀量化。构造它的3位IGS编码。7.一个零记忆高斯信源率失真函数如下: 请绘制出这个函数的曲线。8.证明二元表达式 的正确性。模拟试卷一参考答案1.2.(A)在数字上拣取为 的值,它的中值是 的最大值。(B)一旦值已经被分类一次,我们仅仅是删除在缓慢移动向附近的轨迹的值,插入首要移动的值到分类排列的最恰当位置。3.4.带通滤波器是从1减去带阻滤波器获得的:然后:(a) 理想的带通滤波器:(b) Butterworth带通滤波器:(c) 高斯带通滤波器:5.数据的数量在这个 级金字塔中是被限定在4/3之内的:又因为 ,因此我们可以得到以下的结果:6.7.8.模拟试卷二1.考虑以下所示的图像

35、分割:(A) 令 并计算p和q间的4,8,m通路的最短长度。如果在这两点间不存在特殊通路,请解释原因。(B) 对 重复上题。2.使用式 给出的拉普拉斯变换的定义,证明将一幅图像减去其相应拉普拉斯图像等同于对图像做反锐化掩模处理。3.证明式子 的正确性。4.说明二维正弦函数的傅里叶变换是共轭脉冲对:提示:用式 的连续傅里叶变换并以指数项描述正弦。5.给定 的图像,那么一个 级金字塔是减少还是增加了表示图像所需的数据量?压缩或扩展率是多少?6.考虑灰度级数据12,12,13,13,10,13,57,54的一条8像素的线。这条线已经经过精度为6比特的均匀量化。构造它的3位IGS编码。7.画出下类图形

36、的中轴:(1) 一个圆(2) 一个方形8.有一幅包含水平的、垂直的、45度的和-45度直线的二值图像。给出一组3*3模板。这些模板可以用于检测这些直线中1个像素长度的间断。假设直线的灰度级是1并且背景的灰度级为0。模拟试卷二参考答案1.(A)当 的时候,p和q两点之间不可能存在特殊通路4,因为从p到q之间的点都是4,并且都有从V获得值。下图中的(a)就显示了这一条件,是没有办法到达q的。最短的8通路可在图(b)中看出,它的长度是4。m通路的最短长度是5。这两个是这一题中的唯一的最短通路。(B) 时,最短的4通路的一种可能显示在图(c)中,它的长度是6。它可以十分容易地变换为另一条从p到q的同样

37、长度的4通路。最短的8通路的一种可能(并不是唯一的)显示在图(d)中,它的长度是4。m通路的长度是6,它也不是唯一的。2.考虑到以下公式:当 表示 的平均值在一个预先确定的附近是 的圆心,包括中心的像素和它的四个紧靠着的点。在上述的公式最后一条行中的注入常数如比例因素,我们可以得出:这个等式的右边被看作是公式 的反锐化掩模定义。从而,就证明了,将一幅图像减去其相应拉普拉斯图像等同于对图像做反锐化掩模处理。3.我们首先知道 ,于是:4.运用正弦函数的指数、幂定义:从而得出:以下是函数的傅里叶变换:和:1的傅里叶变换给了最初的动力,而指数替换了最初的动力,因此:5.数据的数量在这个 级金字塔中是被

38、限定在 之内的:又因为 ,因此我们可以得到以下的结果:6.7.8.模拟试卷三1.使用式 给出的拉普拉斯变换的定义,证明将一幅图像减去其相应拉普拉斯图像等同于对图像做反锐化掩模处理。2.式 (其中 )和式 (其中 )所示的 与 一组傅里叶变换对。对于 ,将式 代入式 ,会发现左右两边相等。再重复该过程,对于 ,将式 代入 。需要用到下面的指数正交性质:3.考虑在x方向均匀加速导致的图像模糊问题。如果图像在 静止,并用均匀加速 加速,对于时间T,找出模糊函数 ,可以假设快门开关时间忽略不计。4.以下列基本要素计算二元组 的扩展系数并写出对应的扩展:以二元实数集合 为基础的 和 。5.使用正切角的方

39、法划分方形边界的图。6.有一幅包含水平的、垂直的、45度的和-45度直线的二值图象。给出一组3*3模板。这些模板可以用于检测这些直线中1个像素长度的间断。假设直线的灰度级是1并且背景的灰度级为0。7.画出5*5大小的图象的灰度共生矩阵,图像由交错的1和0的跳棋棋盘图案组成。位置算子P定义为“右边的一个像素”。模拟试卷三参考答案1.考虑到以下公式:当 表示 的平均值在一个预先确定的附近是 的圆心,包括中心的像素和它的四个紧靠着的点。在上述的公式最后一条行中的注入常数如比例因素,我们可以得出:这个等式的右边被看作是公式 的反锐化掩模定义。从而,就证明了,将一幅图像减去其相应拉普拉斯图像等同于对图像

40、做反锐化掩模处理。2.通过直接将 中的 代替 中的F(u)得出:3. 和 ,这是涅耳余弦和正弦的积分。4.根据公式: 可得:所以,5.6.7.模拟试卷四1.考虑以下所示的图象分割:(A) 令 并计算p和q间的4,8,m通路的最短长度。如果在这两点间不存在特殊通路,请解释原因。(B) 对 重复上题。2.(A)试提出一种过程来求一个 邻域的中值?(B)试提出一种技术,逐像素地移动领域的中心来更新中值。3.证明如式 所示的拉普拉斯变换是各向同性的(旋转不变)。需要下列轴旋转 角的坐标方程:其中 为非旋转坐标,而 为旋转坐标。4.证明式子 的正确性。5.获得对应于式子 到式子 的带阻滤波器的带通滤波器

41、的等式。6.说明二维正弦函数的傅里叶变换 是共轭脉冲对:提示:用式 的连续傅里叶变换并以指数项描述正弦。7.考虑灰度级数据12,12,13,13,10,13,57,54的一条8像素的线。这条线已经经过精度为6比特的均匀量化。构造它的3位IGS编码。8.一个零记忆高斯信源率失真函数如下:请绘制出这个函数的曲线。模拟试卷四参考答案1.(A)当 的时候,p和q两点之间不可能存在特殊通路4,因为从p到q之间的点都是4,并且都有从V获得值。下图中的(a)就显示了这一条件,是没有办法到达q的。最短的8通路可在图(b)中看出,它的长度是4。m通路的最短长度是5。这两个是这一题中的唯一的最短通路。(B) 时,

42、最短的4通路的一种可能显示在图(c)中,它的长度是6。它可以十分容易地变换为另一条从p到q的同样长度的4通路。最短的8通路的一种可能(并不是唯一的)显示在图(d)中,它的长度是4。m通路的长度是6,它也不是唯一的。2.(A)在数字上拣取为 的值,它的中值是 的最大值。(B)一旦值已经被分类一次,我们仅仅是删除在缓慢移动向附近的轨迹的值,插入首要移动的值到分类排列的最恰当位置。3. 4.我们首先知道 ,于是:5.带通滤波器是从1减去带阻滤波器获得的:然后:(a) 理想的带通滤波器:(b) Butterworth带通滤波器:(c) 高斯带通滤波器:6.运用正弦函数的指数、幂定义:从而得出:以下是函数的傅里叶变换:和:1的傅里叶变换给了最初的动力,而指数替换了最初的动力,因此:7.8. (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服