ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:234.50KB ,
资源ID:3086068      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3086068.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(聚脲弹性体的结构与性能研究进展.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

聚脲弹性体的结构与性能研究进展.doc

1、聚脲弹性体的结构与性能研究进展 摘要:聚脲弹性体是为适应环保需求而研制开发的一种新型绿色材料。聚脲弹性体集多种功能于一身,全面突破了传统环保型涂装技术的局限。聚脲弹性体优异的理化性能和良好的热稳定性使得其在美国、日本、西欧等发达国家的市场需求非常大。在中国,聚脲弹性体也开始得到了非常广泛的应用。但聚脲在国内应用的同时,质量却跟不上国外的步伐,因此对聚脲性能的研究就显得尤为重要。本文重点研究了聚脲弹性体结构与性能之间的关系。 关键词:聚脲;弹性体;结构;性能 Progress in the structure and performance of polyurea elastomer A

2、bstract:Polyurea elastomer is a new type of green materials developed to meet the environmental needs. Polyurea elastomer has many advantages and has totally broken through the limitations of environmental coating technology. The excellent Physical and chemical Properties as well as good thermal sta

3、bility of Polyurea have made Polyurea elastomer have a great demand in the United States, Japan, Western Europe etc. In China, Polyurea elastomer is also beginning to have a wide range of applications. Though widely needed in our country, the quality of polyurea still fall behind foreign countries.

4、So the research of polyurea’s property is particularly important. The relationship between structure and performance of Polyurea elastomer was our focus in the thesis. Key words: polyurea; elastomer; structure; performance 1 引言 聚脲材料具有较高的抗冲耐磨性、良好的防渗效果、耐腐蚀性强以及优异的综合力学性能,在国防、工民建及水利水电工程中得到了广泛应用。在这个技术

5、领域中,最引人注目的是由聚氨酯发展而来的聚脲弹性体材料。 聚脲弹性体是国外近20年来为适应环保需求而研制开发的一种新型绿色材料[1]。聚脲集塑料、橡胶、涂料、玻璃钢多种功能于一身,全面突破了传统环保型涂装技术的局限[2]。 聚脲弹性体材料一般是由高活性端氨基聚醚和多元胺扩链剂与多异氰酸酯反应制备而成,因为氨基与异氰酸酯基的反应速度很快,不需要使用催化剂。如今市场上用来做聚脲弹性体的原料异氰酸酯一般都是MDI,而作为软段的氨基化合物一般都是氨基聚醚。通过对聚脲弹性体合成工艺技术的不断改进,将把我国的聚氨酯、涂装技术水平推向一个新阶段。 2 聚脲弹性体的合成与表征 1976年,Rowton

6、就在聚氨酯涂料的R组分中添加了Jefferson化学公司的端氨基聚醚[3],合成了聚氨酯脲,但其添加端氨基聚醚的目的是为了提高聚氨酯涂料在不平整基材表面的抗下陷性能,同时Rowton认为端氨基聚醚与A组分异氰酸酯的反应速度过快,难以在工程上进行实际操作,不具备工程实用价值。 1980年代中期,在Gusnler公司的配合下,Texaeo(现Huntsman公司)公司在化学家Primeaux[4]的带领下,在其Austin的实验室,率先研发成功了聚脲喷涂涂料技术。 Broekaert等[5]研究了异氰酸酯异构体,高平均官能度异氰酸酯预聚体对聚脲涂料的固化速度、固化效果及涂层力学性能的影响,研究

7、表明:高MDI含量的异氰酸酯A组分会使涂料的凝胶时间有效降低,但同时却使涂层的拉伸强度和撕裂强度降低,通过Huntsman公司的技术对MDI改性后,可在延长涂料凝胶时间的同时保持力学强度不下降;高平均官能度A组分制得的聚脲涂料力学性能不如低平均官能度A组分制得的聚脲涂料的主要原因是高平均官能度A组分的粘度过高导致混合效果变差;如果能够采取合适技术降低高平均官能度A组分的粘度,可望在延长凝胶时间的同时制得力学性能更加出色的聚脲涂料。 Lee等人[6]用4,4’-二苯甲烷二异氰酸酯与Jefflamine-ED2001合成预聚物,再用3,5-二胺苯甲酸进行扩链合成了聚脲。文章用DMSO-d6溶剂并

8、在室温下用核磁氢谱表征了所合成聚脲的结构,并指出脲键氢的化学位移在8.53ppm和5.35ppm处。 Yadav等人[7]用六亚甲基二异氰酸酯和己二胺在环己烷与水的混合液中合成了聚脲微胶囊,并用广角X射线衍射分析聚脲微胶囊的结晶情况,结果发现在2q为20.0有一个强度比较小的漫散射峰,证明所合成的聚脲微胶囊有结晶存在,但结晶程度不大。 在国内,黄微波等人[2]进行了大量关于喷涂聚脲的研究,并成功开发了适应于工业应用的喷涂聚脲弹性体。 郝敬梅等[8]通过冰乙酸和己二胺(HDA)反应,合成一种新型的酞胺扩链剂二乙酞己二胺(MHDA),将HDA和MHDA分别与4,4’-二苯基甲烷二异氰酸酯反应

9、制备芳香族聚脲弹性体。与HDA扩链剂合成的聚脲相比,由MHDA合成聚脲的反应速率大大降低。文章还对所合成的聚脲弹性体材料进行了力学性能测试,用HDA扩链剂合成的聚脲材料拉伸强度为19.3MPa,断裂伸长率为280%;用MHDA扩链剂合成的聚脲材料拉伸强度为25.2MPa,断裂伸长率为360%。 李雪莲等人[9]以4,4’-二苯甲烷二异氰酸酯和间苯二胺为预聚单体,N,N-二甲基乙酞胺(DMAc)为溶剂,经两步法溶液聚合制备了芳香族聚脲。文章采用IHNMR表征了聚脲样品的化学结构,指出与苯环相邻的亚甲基氢的响应峰在3.8ppm左右,在8.5ppm-8.7ppm之间的两个响应峰为脲键中NH键的响

10、应峰,对应NH基团在聚脲分子链中的两种化学环境。苯环上氢的响应峰在7.3ppm左右。文章还用TGA表征了材料的热性能,并指出所合成聚脲的最大分解速率处温度为290℃。 杨娟等人[10]通过丙烯腈和异佛尔酮二胺(IPDA)的加成反应,合成了一种新型的二元仲胺扩链剂(MIPDA)。将IPDA和MIPDA分别与异佛尔酮二异氰酸酯和端氨基聚醚反应制备了脂肪族聚脲弹性体。文章采用FTIR对所合成的聚脲弹性体进行了表征,并通过对FTIR谱图的分析发现反应很完全,并且脲键上氢的氢键化程度很高。 3 聚脲弹性体的结构与性能 聚脲弹性体的结构比较复杂。它不仅有柔性链段和刚性链段,同时还有规整重复的脲基联结

11、链和其它聚合物化合物的联结链段;它既有直链和支链,也还有交联键;它不仅含有脲基,同时还含有大量的各种各样的其它基团和某些化合物联结。除此之外,各种聚脲弹性体在分子结构,分子键的作用力,分子的聚集态和微相分离等方面,彼此间还有着很大的差异。正因为如此,聚脲弹性体所表现出来的性能必然是多种多样的。只有了解和掌握了某种聚脲弹性体的结构,才有可能判断出它的大致性能,确定它的大致使用的范围。在充分了解聚脲弹性体结构与性能的关系之后,就可能根据实际应用中所需要的性能,来进行聚脲弹性体的结构设计和合成工艺的配方。因此,讨论与研究聚脲弹性体结构与性能关系的目的,就是要起到沟通聚脲弹性体的合成与应用的桥梁作用。

12、 3.1 聚脲弹性体的化学基团及其稳定性 由前面的制备过程可知,聚脲弹性体是一种含有较多亚甲基(-CH2-)、甲基(-CH3)、醚基(-O-)、苯基()、酰胺基(-CO-NH-)、脲基(-NH-CO-NH-)和缩二脲基()等链段的高聚物。因此,这些基团的物理化学性质对聚脲弹性体的性能有很大的影响。例如,这些基团的分子内聚能越高,基团的极性越大,分子间作用力越大,对聚脲弹性体的物理机械性能的影响也就越大,表3.1列出了部分基团的内聚能。 表3.1 一些分子基团及他们的内聚能 基团 分子内聚能 亚甲基(-CH2-) 0.68 苯基() 3.90 醚基(-O-) 1.00 酰

13、胺基(-CO-NH-) 8.50 一般来说,芳环和脲基具有较强的分子间作用力,而醚基却表现出相当好的柔顺性。 醚基之所以具有较好的柔顺性,是由于相邻的亚甲基被醚的氧原子所分开,被分开的亚甲基上的氢原子也被隔离较远,这样便削弱了这两个亚甲基的氢原子之间的相互排斥力,使得键的旋转变得容易的缘故。所以,醚基的分子内聚能(l.00)虽比亚甲基的(0.68)高,但聚醚的熔点仅仅在55-70℃的范围,而聚乙烯的熔点却高于110℃。 另外,各基团的热分解稳定性直接影响到聚脲弹性体的耐热性能。热稳定性差的基团容易软化或分解,这会明显的降低聚脲弹性体的耐热老化性能。 Tobolsky等[11]人通过测

14、定应力松弛,研究了高聚物的流变性后提出,在聚脲弹性体中,各种基团的稳定性是按下列顺序依次下降的: 醚>脲>缩二脲 由此可见,聚脲弹性体在热分解过程中,首先是缩二脲的交联键断裂,随后是脲键的断裂,最后是醚键的断裂。表3.2列出了一些基团的热分解温度。 表3.2 某些基团的热分解温度 基团类型 热分解温度℃ 脲基(-NHCONH-) 260 缩二脲基() 144 氨基甲酸酯基(-R-O-CO-NH-) 24 脲基甲酸酯基() 146 3.2 聚脲弹性体的刚性和柔性及其微相分离 聚脲弹性体分子链段的柔性,来自聚合物链段上各个键的自由旋转性。高分子聚合物的链是由几百至几千

15、个共价键所组成,它的s单键呈轴向对称分布,具有内旋转性。由于几百至几千个共价键都在各自不停的旋转,长长的链段也会在空间不停的产生各种构象。这样,就使得高分子链成为一种不断变化的弯弯曲曲的形状。这些高分子链缠绕在一起,就像一个杂乱的线团,故又称为无规线团。也由于单键的内旋转频率很高,所以,无规线团的形态也变化的很快。它们时而卷曲收缩,时而又扩张伸展,显示出非常柔顺的性能,这就是分子链段的柔顺性。 但是事实上,聚合物分子链段的内旋转性,并不是完全自由的,不同程度的受到分子键作用力和立体效应等的限制。例如,某一聚合物,它的分子之间的作用力越大,分子主链上带有的基团结构也很庞大时,则链段的旋转势垒也

16、就越大,链段的柔性也就越小。所以,人们又把链段受到束缚而不易旋转和不易发生构象变化的状态称之为刚性。 含有较大柔性链段的聚合物,具有良好的弹性,较低的熔点和玻璃化转变温度。属于这一类的有:含有醚基、硫醚基团的聚合物等。含有较大刚性链段的聚合物,具有很高的强度、硬度、以及低的弹性和溶胀性。属于这一类的有:含有芳核的聚合物和极性大的脲基的链段等。 在聚脲弹性体聚集态结构中,分子中的刚性链段,由于其内聚能很大,彼此结合在一起,形成被称为微区的小单元,这些小单元的玻璃化温度远高于室温,在常温下它们呈玻璃态、次晶或微晶,因此把它们称之为塑料相或硬段相。聚脲弹性体分子链中的柔性链段也聚集在一起,构成聚

17、脲的基质或基体,由于其玻璃化温度低于室温,故称为橡胶相或软段相。 在聚脲弹性体的聚集态结构中,塑料相不溶于橡胶相,而是均匀分布在橡胶相中,起着弹性交联点的作用,此现象称为微相分离。 3.3 聚脲弹性体的机械强度 聚脲弹性体在固体状态下使用,在各种外力作用下所表现的机械强度是其使用性能最重要的指标。机械强度主要取决于化学结构的规整性、大分子链的主价力、分子间的作用力,大分子链的柔韧性和上面所提到的微相分离。聚脲弹性体的结晶倾向越大,强度也趋向越大。凡是有利于结晶的因素,如分子的极性大、结构规整、碳原子数为偶数、无侧基支链等,都能提高弹性体的机械强度。但是,作为弹性体是在高弹状态下使用的,不

18、希望出现结晶。这样,就需要通过配方和工艺设计,在弹性和强度之间找到最佳平衡,使制备的聚脲弹性体在使用温度下不结晶,具有良好的橡胶弹性,而在高度拉伸时能迅速结晶,并且这种结晶的熔化温度在室温上下。当外力解除后,该结晶立即熔化。毫无疑问,这种可逆性的结晶结构对提高弹性体的机械强度是颇为有益的。聚脲弹性体能否具有上述可逆结晶结构,主要取决于软链段的极性、分子量、分子间力和结构的规整性。 一般来说,聚酯的分子极性和分子间力大于聚醚,所以聚酯型聚脲弹性体的机械强度大于聚醚型。聚烯烃型的极性很小,所以聚烯烃型聚脲弹性体的机械强度会比较低。软链段中若引入侧基,使大分子间的作用力减弱,会降低机械强度此外,软

19、段分子量对弹性体的机械强度也是有一定影响的。 硬链段的结构对聚脲弹性体的机械性能也有直接的和间接的影响。通常,聚脲弹性体的硬链段由异氰酸酯和扩链剂形成,它们都含强极性的化学结构脲基和刚性的苯环。异氰酸酯中的庞大芳环对提高弹性体的强度起着很大的作用。异氰酸酯的芳环越庞大,由它所制备的弹性体的物理机械强度越高。这是因为芳环越庞大,基团的刚性越强。所以将庞大的芳环引入链段之中就能大大地加强弹性体的刚性。另外,也应指出,由于芳环的过于庞大,就有较大的空间位阻效应,阻碍着聚合物链的相互靠近和规整排列,从而链段不易结晶,从而使之具有较好的低温柔顺性。 Lin等[12]通过聚天冬氨酸酯、端氨基聚醚与脂肪

20、族异氰酸酯六亚甲基二异氰酸酯三聚体/预聚物反应,合成了纯硬段聚脲和不同硬段含量的聚脲,并考察了硬段含量对聚脲动态力学性质和力学性质的影响。材料的拉伸强度、模量和硬度随着硬段增加而提高,弹性则随之降低。 此外,异氰酸酯上的取代基对聚脲弹性体的性能也有很大的影响。异氰酸酯上取代基会阻碍聚脲弹性体链段之间的相互靠近,削弱了分子之间的作用力,链段不易结晶,从而使链的刚性减弱。 Smith等[13]用异佛尔酮二胺(IPDA,结构式如3-1)、乙二胺(EDA)和己二胺(HDA)三种扩链剂合成了不同结构的脂肪族聚氨酯脲和聚脲,并考察了扩链剂对聚氨酯脲和聚脲形态结构与性能的影响。研究结果表明,与EDA和H

21、DA扩链的聚氨酯脲和聚脲相比,IPDA扩链的聚氨酯脲和聚脲中脲拨基的氢键化程度较低。 (3-1) 除了化学结构的影响外,在制备高聚物时,由于外界因素的影响,在材料的表面和内部常常会出现微细的裂纹及气泡杂质等。材料受外力作用时,开裂破坏往往从这些薄弱环节开始。这些裂纹用肉眼难于发现,对着光才能看到像细丝般闪闪发光。 消除裂纹的重要途径是消除材料的内应力。为此,在弹性体中常常添加粉状填料。这些填料与材料的相容性好,填料-粒子的活性表面与周围某些大分子形成次价交联结构。当其中一条分子链受到应力时,可通过交联点将应力分散传递到其它分子上。这样就可减少应力集中,延缓断裂过程的发生,提高材料的机械

22、强度。 除了外加填料的补强作用外,在微相分离比较好的弹性体中,塑料微区所起的补强作用和外加填料的补强作用相似。 塑性微区起两种作用:一是起连接点作用(通过化学键连接到软的基质上);二是作为填料颗粒,对软的基质起增强作用。用断裂裂缝理论可以解释聚脲弹性体的微相分离对拉伸强度的影响。按照此理论,在目前的加工条件下,弹性体的表面和内部不可避免存在微小的裂缝(裂纹)和缺陷(如表面划痕、微孔、微全杂质、晶界和晶界面等),弹性体在应力的作用下,往往就是在这些薄弱环节开始断裂。弹性体受应力的作用而断裂的过程,包含着下面的一些阶段或过程。断裂开始阶段,即裂纹缓慢扩展的阶段和裂纹急剧扩展,并达到某个不稳定尺

23、寸,最终导致弹性体断裂的阶段。在裂纹开始扩展的阶段,除了原有的微孔变形和原有的裂纹缓慢扩展的过程以外,还可能产生新的微孔和新的裂纹,或使原有的裂纹改变方向和分叉,这就导致了因应力的作用而积聚起来的能量分散,延缓了弹性体的断裂,有利于强度的提高。发生微相分离的弹性体形成了许许多多的塑性微区,这些塑性微区的存在使缓慢扩展的裂纹顶端形成弧形,避免了应力集中。当扩展的裂纹碰到塑性微区时,在应力作用下积聚起来的能量可使微区本身发生塑性变形,从而消耗了大量的能量。扩展的裂缝遇到塑性微区的抵抗时,裂缝很可能分叉或改变方向,从而改善了受力样品的受力状态,使应力分散。这些都是发生微相分离的弹性体有很高的拉伸强度

24、的根本原因。 Stanford [14]分别用BDO(结构式如3-2),BDA(结构式如式3-3),4,4’-二苯基甲烷二胺(MDA,结构式如3-4),TEMDA(结构式如3-5)和DETDA(结构式如3-6)五种扩链剂合成了基于MDI和端氨基聚醚的聚脲。他们的研究指出,相界面的脲键对分子量分布的高分子量部分有影响,会导致多分散性系数Z值偏大。相界面的键的性质对杨氏模量的影响很大,试样力学性能的测定结果表明,相界面是脲键的体系的杨氏模量均高于相界面是氨酯键的体系。相界面的脲键对动态剪切模量的影响也很大,硬段微区和软段微区的相界面如果是脲键,则会大大增加其动态剪切模量。这五种不同扩链剂的聚脲的

25、相分离顺序为:DETDA>TEMDA>BDA>MDA>BDO。 (3-2) (3-3) (3-4) (3-5) (3-6) 3.4 聚脲弹性体的其他性能[15] 从分子结构上可以看出,脲基呈现以-CO-基团为中心的几何对称结构,相比聚氨酯材料的氨基甲酸酯基更稳定,所以聚脲材料的耐老化、耐化学介质、耐磨、耐核辐射和耐高温等综合性能优于聚氨酯材料。下面列出了聚脲弹性体的一些优良性能: (1)附着力强。聚脲弹性体材料在钢、混凝土和铝材等基材表面均具有良好附着力。 (2)耐交变温度性能。聚脲弹性体材料具有非常优异的弹性和低温柔韧性,用它完全能够保护橡胶和钢结构组成的复杂边界

26、体系,确保在温度剧烈变化的情况下,两种线膨胀系数完全不同的复合材料之间,不会产生开裂和脱落现象。 (3)耐磨性能。聚脲弹性体被称为耐磨橡胶,具有优异的耐磨性,其耐磨性能是碳钢的10倍,是环氧树脂的3-5倍。 (4)耐疲劳破坏性好。 (5)耐交变压力性能。 (6)耐空泡腐蚀性能好。 (7)耐介质性能。聚脲弹性体有非常好的耐化学腐蚀性能和耐油性能,可长期在户外使用。 (8)耐浸泡性能。能够耐水、油的长期浸泡。 (9)户外耐老化性能。由于聚脲特定的分子结构以及体系中不含催化剂,所以聚脲表现出优异的耐老化性能。 (10)耐辐射性能。聚脲拥有优秀的耐紫外老化性能和耐核辐射性能。 (11

27、)耐海洋环境性能好。 4 展望 聚脲在实际生活中多用为防腐防水材料和涂料,结合防腐防水材料和涂料的应用性能来对聚脲进行研究,针对性的对聚脲的应用性能进行改进,对聚脲的工业应用具有更重要的意义。随着新型原材料和新型设备的出现,聚脲弹性体作为一种环保绿色防护涂层必将越来越多的应用于基础建设和国民生活中。 参考文献 [1]D J Primeaux. A study of polyurea spray elastomer system[J]. High Solid Coatings, 1994, 15: 2-6. [2]黄微波. 喷涂聚脲弹性体技术概况[J]. 上海涂料,2006,44(1

28、):29-31. [3]Rowton, R Le. Polyurethane elastomers having improved sag resistance[P]. USP: 3979364, 1977. [4]Primeaux, J Dudley: Sprayable polyurea elastomer made from reaction of isocyanate compound with amine terminated polyether and di(methylthio)toluene diamine and diethytoluene diamine chain e

29、xtenders[P].USP: 5124426, 1922. [5]M Broekaert, W Pille-Wolf. The influence of isomer composition and functionality on the final properties od aromatic polyureas pray coating[C]. Proceedings of the Urea 2000 Conference, 2000 [6]S Lee, C Chen, C Wang. Conductivity and Characterization of Polyurea

30、Electrolytes with Carboxylic Acid[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2003,41: 4007-4016 [7]S K Yadav, K C Khilar, A K Suresh. Release rates from semi-crystalline polymer microcapsules formed by interfacial polycondensation[J]. Journal of Membrane Science, 1997, 125: 213-218

31、 [8]郝敬梅,邓宇,甘灰炉,宋蔚. 改性二胺合成新型芳香族聚脲弹性体的研究[J]. 2008,11:57-60. [9]李雪莲,陈大俊. 芳香族聚脲的合成与表征[J]. 化学世界,2005,5:273-276. [10]杨娟,王贵友,胡春圃. 改性二胺合成新型脂肪族聚脲弹性体[J]. 华东理工大学学报,2003,29(5):480-458. [11]J A Offenbach,A V Tobolsky. Chemical relaxation of stress in polyurethane elastomers[J]. Journal of Colloid Science, 199

32、6, 11(10): 39-47. [12]J Lin, J Z Jan, F P Tseng. Preparation, characterizaition, and electrostatic dissipating properties of poly(oxyalkylene)-segmented polyureas[J]. Journal Of Applied Polymer Science, 2001, 33(3): 248-254. [13]S B Smith.Aliphatic polyurea prepolymers composition and methods[P]. USP: 6437078, 2002. [14]J L Stanford. Effects of soft-segment prepolymer functionality on structure development in RIM copolymers[J]. Polymer, 1995, 36(18): 3555-3564. [15]黄微波. 喷涂聚服弹性体的性能[J]. 上海涂料,2000,44(9):36-40. 专业文档供参考,如有帮助请下载。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服