ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:2.53MB ,
资源ID:307617      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/307617.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于GEE的长三角生态环境质量评价及其影响因素分析.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于GEE的长三角生态环境质量评价及其影响因素分析.pdf

1、第46卷第3期2023 年 5 月Vol.46 No.3M a y.2 0 2 3安徽师范大学学报(自然科学版)Journal of Anhui Normal University(Natural Science)陈铭杨,程煜,杨洪伟,等:基于GEE的长三角生态环境质量评价及其影响因素分析DOI:10.14182/J.cnki.1001-2443.2023.03.011基于GEE的长三角生态环境质量评价及其影响因素分析陈铭杨,程煜,杨洪伟,黄薇薇,杨冬雪,任雅茹(安徽师范大学地理与旅游学院,安徽芜湖241002)摘要:把握区域生态环境的时空格局,厘清其主要影响因素,对实现区域生态文明建设具有决

2、定性作用。基于GEE平台,构建遥感生态指数(RSEI),解析20012020年间长三角生态环境质量时空变化,并利用随机森林模型分析其影响因素。结果显示:(1)时间维度上,RSEI先降后升,但研究期末仍低于期初;空间维度上,山地丘陵区RSEI显著高于各城市建成区。(2)时空演化上,皖北地区RSEI始终呈上升态势,长江沿岸及太湖周边城市建成区RSEI明显呈下降趋势。(3)建设用地面积占比(POCL)、坡度(SLOPE)和高程(DEM)是影响长三角RSEI的主导因素。当POCL大于3%时,对RSEI起抑制作用,在3%-50%区间,其抑制作用更为显著;SLOPE在0-0.6和2.5-29.5区间对RS

3、EI起促进作用,而在0.6-2.5和大于29.5区间对RSEI起抑制作用;DEM 1150 m时,其对RSEI的促进作用达到最大后保持平稳。进一步优化城市用地空间布局,增加城市绿地面积,是实现长三角高质量发展的必由之路。关键词:长三角;生态环境质量;随机森林;影响因素中图分类号:X87;X826文献标志码:A文章编号:1001-2443(2023)03-0277-09引言伴随着我国城镇化进程的不断加快,土壤退化、水质恶化、大气污染等生态环境问题日益突出1,在影响自然环境的同时也极大制约了社会经济的高质量发展。及时监测与评估区域生态环境的变化,对保持区域生态环境质量具有重要意义。生态环境质量评价

4、作为生态环境研究中的关键问题,备受学者关注。早期生态环境质量评价研究中,学者们多采用基于面板统计数据的压力状态响应模型(PSR)2、生态环境指数(EI)3、生态足迹4等方法。这类方法所需指标较多,部分指标数据获取难度大,且研究受限于行政区划影响,多为省域4、市域5和县域6等中宏观尺度,缺乏空间上的整体情况研究。2013年,徐涵秋7-8提出的遥感生态指数(Remote SensingEcological Index,RSEI)由热度、绿度、干度、湿度四个指标组成,该指数的指标数据可完全通过遥感手段获得,且能反映区域生态系统的复杂性、多样性和典型性,同时,该指数可从栅格尺度上评价区域生态环境质量。

5、因此,RSEI很快成为了测度生态环境质量的有效新手段9-10。然而,利用RSEI评价大范围区域的生态环境质量时,却会面临庞大的遥感数据下载和预处理的困难11。随着Google Earth Engine(GEE)平台的建立与发展,其强大的云算力和存储特征为遥感影像数据的处理提供了高效的处理平台12,进一步推动了RSEI的应用13-14。收稿日期:2022-05-07基金项目:安徽省高校自然科学研究项目(KJ2019A0496).作者简介:陈铭杨(1998),男,安徽六安市人,硕士研究生,主要研究方向为生态环境遥感与GIS应用;通讯作者:黄薇薇(1976),女,安徽滁州市人,硕士,副教授,主要研究

6、方向为资源环境与区域发展.引用格式:陈铭杨,程煜,杨洪伟,等.基于GEE的长三角生态环境质量评价及其影响因素分析 J.安徽师范大学学报(自然科学版),2023,46(3):277-285.2023 年安 徽 师 范 大 学 学 报(自 然 科 学 版)长三角是我国经济社会发展最具显示性的战略区域,其快速发展的背后是植被覆盖率下降、生态用地减少、生态系统退化等一系列生态环境问题,严重削弱了该区域环境承载能力。在长三角一体化全方位加速发展的新阶段,“坚持绿色高质量发展,把保护和修复生态环境摆在重要位置”,高度重视并构建区域生态环境保护共同体是实现生态环境质量保护与经济发展双重目标的客观需求。当前从

7、栅格尺度评价长三角整体生态环境质量的相关研究较少,此外,在生态环境质量影响因素研究中通常采用地理探测器1、相关分析法9、因子分析法15等方法,但这类方法只能揭示解释变量与因变量之间的线性关系,而非线性的随机森林模型则可以弥补以上方法的不足。因此,本文将借助GEE平台,基于MODIS数据,建立RSEI综合评价模型,研究20012020年长三角生态环境质量的时空演化特征,并运用随机森林模型探析影响因素的重要性及其与生态环境质量之间的非线性关系,以期为长三角生态环境保护提供科学依据。1研究方法与数据来源1.1数据来源构建遥感生态指数所需的归一化植被指数(NDVI)数据提取自MOD13A1数据集,该数

8、据集选取每个位置十六天内的最优像素进行合成,分辨率为500 m;地表温度(LST)数据提取自MOD11A2地表温度数据集,MOD11A2数据集以1 km的分辨率提供了8天地表温度的平均值;干度和湿度数据提取自MOD09A1影像集,MOD09A1影像集提供了MODIS影像中7个波段的表面光谱反射率估计值,该影像集以8天为周期进行合成,分辨率为500 m16。土地利用和DEM数据来源于中科院资源环境科学与数据中心(https:/ m30 m,DEM空间分辨率为90 m90 m,同时基于DEM数据,通过ArcGIS 10.5中的Aspect和Slope工具计算出坡度和坡向数据。降水数据和气温数据均来

9、自国家地球系统科学数据中心(http:/ km1 km。人口密度栅格数据来源于Worldpop(https:/www.worldpop.org/),空间分辨率为1 km1 km。GDP栅格数据是基于夜间灯光数据、土地利用数据及市级GDP统计数据对1km1km的网格赋值所得到17,空间分辨率为1km1km。1.2预处理在GEE平台上采用去云中值的方法合成2001、2005、2010、2015和2020年五个时相夏季MODIS数据集,并将MODIS数据集分辨率重采样为1 km。为确保计算土壤和植被湿度的准确性,需要掩膜去除大面积水体。坐标系统一采用WGS1984地理坐标系,并基于5 km5 km渔

10、网统计遥感生态指数和各影响因素的均值。1.3研究方法1.3.1遥感生态指数遥感生态指数(RSEI)可由绿度、热度、湿度和干度四个生态指标构成7-8。绿度通过NDVI来表征;热度可用地表温度(LST)来表征;湿度指标(WET)使用MOD09A1多光谱影像集经缨帽变换后的第三分量进行表征,代表土壤和植被所含水分的多少18;干度指标(NDBSI)采用建筑指数(IBI)和裸土指数(SI)的平均值来刻画19-20。各生态指标的计算方法见表1。表1生态指标计算方法Table 1Calculation method of ecological index指标NDVILSTWETNDBSI计算方法NDVI=0

11、.0001NDVI0LST=0.02DN273.15WET=0.1147R+0.2489N1+0.2408B+0.3132G0.3122N20.6416SW10.5087SW2SI=(SW1+R)(N1+B)/(SW1+R)+(N1+B)IBIa=2SW1/SW1+N1 (N1/N1+R)+(G/G+SW1)IBIb=2SW1/SW1+N1+(N1/N1+R)+(G/G+SW1)IBI=IB1a/IBIbNDBSI=(SI+IBI)/2指标说明NDVI0指MOD13A1数据集DN指MOD11A2地表温度影像数据集的灰度值R、B、G和N1、N2、SW1、SW2分别为MOD09A1数据集的红、蓝、

12、绿和近红外1、近红外2、中红外1、中红外2波段278陈铭杨,程煜,杨洪伟,等:基于GEE的长三角生态环境质量评价及其影响因素分析46卷第3期由于四个生态指标的量纲不统一,首先通过正向标准化,将四个指标的数值映射到 0,1 之间,见式(1):I=()Mi-Mmin/()Mmax-Mmin(1)式中,I代表生态指标标准化后的值,Mi为四个生态指标的原始值,Mmin为生态指标的最小值,Mmax为生态指标的最大值19。其次,通过主成分分析把归一化后的生态指标计算成初始化的RSEI0,见式(2):RSEI0=PCA1 f(NDVI,WET,LST,NDBSI)(2)式中,PCA1为第一主成分,f代表对四

13、个指标进行正向归一化处理,同样对初始化的遥感生态指数RSEI0利用式(3)进行正向归一化处理,得到综合遥感生态指数RSEI,如式(3):RSEI=(RSEI0-RSEI0min)/(RSEI0max-RSEI0min)(3)式中,RSEI为综合遥感生态指数,RSEI0min和RSEI0max分别为RSEI0的最小值和最大值。RSEI越接近于1,表示生态环境质量越好。1.3.2随机森林模型随机森林模型是Breiman于2001年提出的一种基于决策树的机器学习算法,可模拟解释变量和因变量之间的复杂关系21。随机森林利用bootsrap重采样方法从原始样本中抽取多个样本构造决策树,其回归模型结果按决

14、策树投票分数而定22。本文将2001年、2010年和2020年三个时相的8个影响因子和RSEI分别作为自变量和因变量,按照1 9的比例划分测试集和训练集构建随机森林模型。利用部分依赖图描述某一解释变量在排除其他解释变量的情况下与因变量之间的回归关系,并通过测试集的R2来对模型精度进行表征。2 2结果与分析2.1RSEI模型检验由表2可知:(1)四个指标各年份第一主成分(PC1)的贡献率均在60%以上,表明PC1能集合四个指标大部分的特征信息23,可用于主成分分析;(2)四个指标的平均贡献度绝对值中,NDVI(0.6743)NDBSI(0.5734)LST(0.3584)WET(0.2003);

15、(3)PC1中四个指标的贡献度中NDVI 与 WET 为正值,起正向效应,LST与NDBSI为负值,起负向效应,这与实际情况相符。因此,依据PC1提取的信息构建RSEI是合理的。由于缺乏实测数据,因此直接评价RSEI模型的准确性较为困难。而生态环境质量与土地利用类型密切相关24,因此可借助土地利用数据间接验证RSEI模型的准确性。以0.2为间隔,将RSEI划分为优、良、一般、较差和差五个等级9,并统计2001年、2010年和2020年三个时相各等级的土地利用类型面积占比,据此绘制成图1。由图1可知,RSEI等级为优的主要土地利用类型是林地,其次是耕地,其余用地类型占比非常小。RSEI等级为良和

16、一般的土地利用类型情况非常相似,主要是耕地,占比都在50%以上。RSEI等级为差和较差的土地利用类型以建设用地为主,其中RSEI等级为差中的建设用地面积占比达到了70%以上。这与林地是生态用地,耕地是半生态用地,建设用地是非生态用地25的实际情况相符合。因而,本文所构建RSEI模型测算的结果是可靠的。图1各等级RSEI的土地利用类型面积占比Fig.1Proportion of land use type area of RSEI of each grade年份20012005201020152020第一主成分 PC1NDVI0.78460.57810.57700.67130.7606LST-0

17、.4473-0.3105-0.3088-0.3464-0.3792WET0.33360.28060.14330.17540.0690NDBSI-0.2703-0.7005-0.7425-0.6313-0.5224特征值0.01410.02270.02850.02460.0224贡献率61.33%67.26%69.69%67.77%65.35%表2四个指标的主成分析结果Table 2Results of PCA of four indexes2792023 年安 徽 师 范 大 学 学 报(自 然 科 学 版)2.2生态环境质量时空特征从图2可以看出,研究期内,长三角生态环境质量呈先降后升的波动

18、变化,但研究期末仍差于研究期初,最高值(0.6686)出现在2005年,最低值(0.6354)出现在2015年。具体来看,20012005年间,生态环境质量略微变好,这是因为2005年全国降水普遍偏多,而降水的增多会在一定程度上提高土壤的湿度。20052015年逐渐恶化,原因是城市化的快速发展,生态用地的大幅度缩减,使得生态功能退化。20102015年下降速率较前五年有所减缓,下降速率由3.25%降至1.78%,20152020年间生态环境质量明显改善,这一期间,国家相继发布了 全国生态保护与建设规划(20132020年)生态文明体制改革总体方案,这为长三角大力开展生态保护和治理提供了指导,导

19、致区域生态环境质量逐步好转。图220012020年长三角RSEI箱型图Fig.2Box diagram of RSEI in Yangtze River Delta from2001 to 2020图320012020年长三角RSEI等级面积占比Fig.3Proportion of RSEI grade area in Yangtze River Deltafrom 2001 to 2020为了进一步分析长三角生态环境质量,以0.2为间隔将RSEI分成五类等级9,分别是差 0,0.2、较差0.2,0.4、一般 0.4,0.6、良好 0.6,0.8 和优 0.8,1.0。由图3和表3可知,长三角

20、生态环境质量以良好等级为主,其面积占比超过50%,这与长三角水热条件优越、绿化覆盖率较高的事实相符合。从时间上来看:优等级面积占比呈现出升降升的变化趋势;良好等级面积占比呈现出降升的变化趋势,最高值(63.68%)出现在2001年,最低值(51.24%)出现在2015年;一般等级面积占比呈现出升降的变化趋势;较差和差等级呈现出降升降升的变化趋势,波动较大。表3长三角生态环境质量等级面积与比例统计Table 3Statistics of area and proportion of ecological environment quality grades in Yangtze River De

21、lta年份20012005201020152020优面积(104km2)3.634.824.183.794.66比例(%)11.2114.8812.9111.6914.39良面积(104km2)20.6418.8617.6016.6117.84比例(%)63.6858.2054.2951.2455.06一般面积(104km2)6.817.528.439.367.38比例(%)21.0023.2026.0328.8922.78较差面积(104km2)1.221.161.982.522.35比例(%)3.753.576.127.797.25差面积(104km2)0.110.050.210.120.

22、17比例(%)0.350.160.650.380.52从空间分布格局来看(图4),长三角生态环境质量整体呈“北劣南优,东差西好”的空间格局。其中,生态环境质量等级为差和较差的区域主要集中分布在上海、苏州、无锡和常州等城镇化水平较高的地区,其建设用地面积的扩张挤占了原本的生态用地,导致植被绿地减少,城市热岛效应增强。等级为优良的区域主要分布在皖西大别山以及皖南和浙江南部等山地丘陵区,这里植被覆盖率较高,人类活动强度相对较弱,生态承载能力较强。等级为一般的地区主要集中分布在皖北,2001年皖北地区的生态环境质量以一般为主,部分地区生态环境质量处于较差和差等级,这是由于该地区的土地利用类型以农业用地

23、为主,早期的农业生产方式280陈铭杨,程煜,杨洪伟,等:基于GEE的长三角生态环境质量评价及其影响因素分析46卷第3期较为粗放,随着绿色农业生产技术的应用与推广,皖北地区生态环境质量逐渐改善,2020年皖北地区大部分地区生态环境质量处于良好等级,只有阜阳市的中南部小范围区域生态环境质量仍以一般等级为主。图420012020年长三角生态环境质量分级图Fig.4Classification map of ecological environmental quality in Yangtze River Delta from 2001 to 20202.3生态环境质量时空演变表4给出了长三角2001

24、2020年三个不同时段的生态环境质量变化面积统计结果,可以看出,20012010年,持续改善的区域面积为4.43万 km2,而退化的区域面积为6.8万 km2,生态环境质量退化的面积明显高于改善的面积,表明长三角在20012010年间生态环境质量处于下降的趋势。与20012010年相比,20102020年生态环境质量变化具有与之相反的趋势,20102020年,生态环境质量改善的面积为4.83万km2,高于生态环境质量退化的面积4.14万 km2。总体来看,20012020年与20012010年具有类似的变化趋势,虽然近10年生态环境质量有所改善,但改善的幅度还不够显著。表420012020年长

25、三角生态环境质量变化面积统计Table 4Statistics of change area of ecological environment quality in Yangtze River Delta from 2001 to 2020类别显著变差明显变差略微变差无明显变化略微变好明显变好显著变好20012010面积(104km2)0.082.164.9620.773.201.180.05比例(%)0.256.6615.3064.109.883.640.1620102020面积(104km2)0.050.803.3923.323.761.050.02比例(%)0.162.4710.477

26、1.9811.623.250.0620012020面积(104km2)0.172.515.1319.033.701.710.14比例(%)0.547.7415.8258.7511.425.290.44依据图5可知,不同地区RSEI的变化趋势存在明显的空间差异。20012010年,生态环境变差的区域主要集中在苏州、常州、无锡、上海等城市化发展较快的地区,江苏中部和北部城市生态环境质量也有所变差,与湿度有所降低相关,皖北农业区的生态环境质量明显提高。20102020时间段里,皖北农业区、江苏省、上海市和浙江省南部区域生态环境质量有所改善,这得益于生态保护规划与措施的制定和实施,以及人2812023

27、 年安 徽 师 范 大 学 学 报(自 然 科 学 版)们生态保护理念的提升,变差的区域较少,主要集中在合肥、阜阳等地,如近些年来经济社会发展迅速的合肥市,其建设用地面积更是由2001年的125.00 km2增至2020年的466.54 km2,扩大了将近三倍。整体来看,20012020年,长三角生态环境质量变差的地区主要分布在城市建成区,生态环境质量改善的地区主要集中分布在皖北农业区。值得注意的是,上海市的不透水面面积(主要包括建筑和道路)由2001年的1367.96 km2增加至2020年的2472.39 km2,超过上海市总面积的三分之一26,但经过近20年的环境治理和造林,上海市的森林

28、覆盖率从1999年的3%增至2020年的18.49%,虽然2020年上海市生态环境质量较2001年有所下降,但整体呈好转趋势。图520012020年长三角生态环境质量空间变化图Fig.5Spatial change map of ecological environmental quality in Yangtze River Delta from 2001 to 20202.4生态环境质量影响因素分析生态环境质量受到自然和人文因素的综合影响27。基于对已有研究的梳理1,9,28,遵循科学性和可获取性等原则,本文选取 2001 年、2010年和2020年三个时相的高程(DEM)、坡度(SLOP

29、E)、坡向(ASPECT)、年均降水(PRE)以及年均气温(TEM)作为自然解释变量,GDP、人口密度(POP)和建设用地面积占比(POCL)作为人文解释变量,RSEI为被解释变量,用以构建随机森林模型。在构建随机森林模型前,利用SPSS软件对三个时相的8个影响因素与对应年份的RSEI做了相关性分析,结果(表5)显示各年份的影响因素均在0.01的显著性水平与RSEI上显著相关,满足构建随机森林的条件。基于随机森林模型构建RSEI与影响因素之间的回归模型,三个时相的测试集决定系数R2分别为0.811、0.811和0.843,均在0.8以上,说明模型拟合结果较好。图6是基于permutation方

30、法得到的影响因素相对重要性排序。由图6可知,自然因素中,PRE和TEM的重要性大小排名相对靠后,表明二者对长三角RSEI空间分布的影响力不够显著,其中2001年PRE重要性大小偏高是由于该年份长江下游地区出现干旱的状况,导致PRE解释力偏高。其次,ASPECT对RSEI变化无明显驱动作用,SLOPE和DEM重要性排名靠前,表明二者对RSEI空间分异性的解释力度高。人文因素中,POCL的重要性自2010年以来明显大于其他影响因子,表明POCL已逐渐成为长三角RSEI变化的主导因子,GDP与POP则相对靠后,三个人文因素的重要性大小在研究期内增加较快,说明研究期内人类活动对生态环境的影响持续增强。

31、总体来说,POCL、SLOPE和DEM的重要性大小排名相指标建设用地面积占比GDP人口密度年均气温年均降水高程坡度坡向2001-0.519*-0.325*-0.431*-0.343*0.467*0.492*0.527*0.138*2010-0.690*-0.625*-0.519*-0.290*0.464*0.530*0.577*0.149*2020-0.677*-0.385*-0.458*-0.363*0.308*0.522*0.566*0.194*表5相关性分析结果Table 5Correlation analysis results*P0.01图6影响因素相对重要性排序Fig.6Ranki

32、ng of relative importance of influencingfactors282陈铭杨,程煜,杨洪伟,等:基于GEE的长三角生态环境质量评价及其影响因素分析46卷第3期对靠前,是影响长三角RSEI的主导因素。为准确得出各变量与RSEI的偏依赖关系,这里选取三个时相的所有样本数据构建随机森林模型,并得到偏依赖关系图(图7),其反映了长三角RSEI与各影响因素之间的数理关系。结果表明:建设用地面积占比与RSEI的关系呈现出平稳下降的趋势,当建设用地面积占比小于3%时,RSEI稳定不变,表明此时RSEI受到城市扩张的影响较小,当建设用地面积占比大于3%时,其与RSEI呈显著的负相

33、关关系,值得注意的是,当建设用地面积占比在3%-50%时,RSEI迅速下降,表明此时城市扩张对生态环境的抑制作用较强。GDP在3.1105万元/km2内与RSEI呈显著的负相关关系,RSEI随着GDP的增加先是急剧下滑再缓慢下滑,当GDP增加至3.1105万元/km2,RSEI达到低值后开始趋于平缓。人口密度对生态环境的影响与GDP相类似,当人口密度小于2.5104人/km2时,其与RSEI呈负相关关系。高程偏依赖图中可以看出,随着高程的增加,RSEI随之增加,到1150 m左右达到最高值并几乎保持不变。海拔是影响人口和经济发展的重要因素,通常人类在海拔较低的平原地带活动较为频繁 29,高海拔

34、地区人类活动干扰相对较小,因而长三角高海拔地区的生态环境质量相对较好。坡度与RSEI的关系呈现出上升下降上升下降的趋势,当坡度小于0.6时,RSEI开始上升,随后在0.6-2.5之间,RSEI开始下降,当坡度大于2.5时,RSEI又开始上升,直至29.5时,RSEI才呈下降趋势,可能是由于坡度大于29.5时易发生水土流失,进而造成RSEI的下降。由ArcGIS 10.5坡向分类可知,阳坡在135-225之间,半阳坡为225-315,坡向偏依赖图中可以看出阳坡的生态环境质量明显高于阴坡。气温偏依赖图中可以看出,随着气温上升RSEI呈现出平稳上升波动下降的趋势,当年均气温低于13.8 时,RSEI

35、几乎稳定不变,而年均气温在13.8-15 间,RSEI开始上升,随后开始波动下降,这是因为气温会影响植被绿度的高低 30,同时气温会改变城市热岛强度 31,进而影响RSEI。降水与RSEI的关系基本呈现上升下降平稳的趋势,当年均降水小于1150 mm时,RSEI逐渐上升,而年均降水大于1150 mm小于2100mm时,RSEI开始下降,年均降水大于2100mm时,则几乎保持不变,与植被生长对降水有一定的最适范围有关 32。图7各影响因素对RSEI的偏依赖关系图Fig.7Partial dependence of various influencing factors on RSEI3讨论(1)

36、传统RSEI构建过程需要在计算机本地下载和处理遥感影像数据,过程较为繁琐。且在面对研究区2832023 年安 徽 师 范 大 学 学 报(自 然 科 学 版)中云量较多区域存在数据缺失这一问题时,研究者们通常采用相近年份的遥感影像来替代该年份的遥感影像11,一定程度上影响了结果的准确性。借助GEE平台使用去云中值的方法合成夏季RSEI分指标数据,一方面可以极大提升模型构建效率,另一方面可有效减小云量的干扰,提高研究的准确性。(2)已有相关研究表明,MODIS遥感影像相较于Landsat系列遥感影像更加适合于中尺度的研究33,故本研究选取MODIS遥感影像作为数据源构建RSEI模型。建模结果显示

37、,PC1中四个指标贡献度的正负值分布与实际情况相符合,且经验证RSEI模型得到的结果合理可靠。因此,本研究基于GEE平台采用MODIS数据构建的RSEI,可较好的评估长三角生态环境质量。(3)本文构建的随机森林模型精度较高,可以有效解释影响因素与RSEI之间的非线性关系。但同时也存在一些不足,本文随机森林模型的运算基于栅格数据模式,一些常规的统计年鉴数据由于缺乏成熟的空间化数据集而无法选用22,未来可考虑用机器学习的方法来实现统计年鉴数据空间化。4结论本文基于GEE平台,通过MODIS数据构建遥感生态指数(RSEI),解析了20012020年间长三角生态环境质量时空变化,并利用随机森林分析了其

38、影响因素。主要结论如下:(1)长三角整体生态环境质量本底较好。从时序特征上来看,长三角生态环境质量呈先降后升的波动变化,但研究期末仍差于期初。从空间格局上来看,整体呈现出“北劣南优,东差西好”的分异格局。从时空演化上来看,皖北生态环境质量逐渐趋好,长江沿岸、太湖周边地区的城市建成区生态环境质量明显变差。(2)建设用地面积占比(POCL)、坡度(SLOPE)和高程(DEM)是造成长三角RSEI空间分异的主导因子。当POCL大于3%时,其对RSEI起负面影响,在3%-50%区间,对RSEI的抑制作用显著增强;SLOPE在2.5-29.5和0-0.6两个区间对RSEI起促进作用,而在大于29.5和0

39、.6-2.5两个区间时对RSEI起抑制作用;DEM1150 m时,其对RSEI的促进作用达到最大后保持平稳。(3)建设用地的迅速扩张是导致长三角地区生态环境质量下降的主要原因,因此未来需要合理规划城市用地空间布局,增加城市绿地面积,以实现长三角地区的高质量发展。此外,可根据各影响因素与RSEI之间的关系,因地制宜地开展生态环境治理与保护工作。参考文献1宋媛,石惠春,谢敏慧,等.20002017年甘肃省生态环境质量时空演变格局及其影响因素 J.生态学杂志,2019,38(12):3800-3808.2高珊,黄贤金.基于PSR框架的19532008年中国生态建设成效评价 J.自然资源学报,2010

40、,25(2):341-350.3宋述军,柴微涛,周万村.RS和GIS支持下的四川省生态环境状况评价 J.环境科学与技术,2008(10):145-147.4张志强,徐中民,程国栋,等.中国西部12省(区市)的生态足迹 J.地理学报,2001(5):598-609.5PAN H Y,ZHUANG M,GENG Y,et al.Emergy-based ecological footprint analysis for a mega-city:The dynamic changes of Shanghai J.Journal of Cleaner Production,2018,210:552-5

41、62.6刘瑞,王世新,周艺,等.基于遥感技术的县级区域环境质量评价模型研究 J.中国环境科学,2012,32(1):181-186.7徐涵秋.区域生态环境变化的遥感评价指数 J.中国环境科学,2013,33(5):889-897.8徐涵秋.城市遥感生态指数的创建及其应用 J.生态学报,2013,33(24):7853-7862.9李婷婷,马超,郭增长,等.基于RSEI模型的贺兰山长时序生态质量评价及影响因素分析 J.生态学杂志,2021,40(4):1154-1165.10XU H Q,WANG Y F,GUAN H D,et al.Detecting ecological changes w

42、ith a remote sensing based ecological index(RSEI)produced time se-ries and change vector analysis J.Remote Sensing,2019,11(20):2345.11王渊,赵宇豪,吴健生,等.基于Google Earth Engine云计算的城市群生态质量长时序动态监测以粤港澳大湾区为例 J.生态学报,2020,40(23):8461-8473.12杨露.祁连山地区生态环境质量时空变化及其驱动机制分析 D.兰州:兰州大学,2021:1-2.13WEI H L,WEI G J.Evaluatio

43、n of the spatiotemporal variations in the eco-environmental quality in China based on the remote sensing indexJ.Remote Sensing,2020,12(15):2462.14YANG X Y,MENG F,FU P J,et al.Spatiotemporal change and driving factors of the eco-environment quality in the Yangtze River Basinfrom 2001 to 2019 J.Ecolog

44、ical Indicators,2021,131:108214.15郑岚,张志斌,笪晓军,等.嘉峪关市土地生态安全动态评价及影响因素分析 J.干旱区地理,2021,44(1):289-298.16 郑子豪,吴志峰,陈颖彪,等.基于GoogleEarthEngine的长三角城市群生态环境变化与城市化特征分析 J .生态学报,2021,41(2):717-729.284陈铭杨,程煜,杨洪伟,等:基于GEE的长三角生态环境质量评价及其影响因素分析46卷第3期17韩向娣,周艺,王世新,等.基于夜间灯光和土地利用数据的GDP空间化 J.遥感技术与应用,2012,27(3):396-405.18LOBSE

45、R S E,COHEN W B.MODIS tasseled cap:Land cover characteristics expressed through transformed MODIS date J.InternationalJournal of Remote Sensing,2007,28(22):5079-5101.19刘峰,杨光,韩雪莹,等.科尔沁沙地生态环境质量遥感动态监测以奈曼旗为例 J.水土保持研究,2020,27(5):244-249+258.20HU X S,XU H Q.A new remote sensing index for assessing the spa

46、tial heterogeneity in urban ecological quality:A case from Fuzhou City,China J.Ecological Indicators,2018,89:11-21.21BREIMAN L.Random forests J.Machine learning,2001,45(1):5-32.22夏晓圣,陈菁菁,王佳佳,等.基于随机森林模型的中国PM2.5浓度影响因素分析 J.环境科学,2020,41(5):2057-2065.23陈炜,黄慧萍,田亦陈,等.基于Google Earth Engine平台的三江源地区生态环境质量动态监测

47、与分析 J.地球信息科学学报,2019,21(9):1382-1391.24ZHENG Z H,WU Z F,CHEN Y B,et al.Instability of remote sensing based ecological index(RSEI)and its improvement for time seriesanalysis J.Science of the Total Environment,2022,814:152595.25刘继来,刘彦随,李裕瑞.中国“三生空间”分类评价与时空格局分析 J.地理学报,2017,72(7):1290-1304.26黄昕,李家艺,杨杰,等.L

48、andsat卫星观测下的30m全球不透水面年度动态与城市扩张模式(19722019)J.中国科学:地球科学,2021,51(11):1894-1906.27吴宜进,赵行双,奚悦,等.基于MODIS的20062016年西藏生态质量综合评价及其时空变化 J.地理学报,2019,74(7):1438-1449.28排日海 合力力,昝梅,阿里木江 卡斯木.乌鲁木齐市生态环境遥感评价及驱动因子分析 J.干旱区研究,2021,38(5):1484-1496.29刘睿文,封志明,杨艳昭,等.基于人口集聚度的中国人口集疏格局 J.地理科学进展,2010,29(10):1171-1177.30LAMCHIN M

49、,LEE W K,JEON S W,et al.Long-term trend and correlation between vegetation greenness and climate variables in Asia basedon satellite data J.Science of the Total Environment,2018,618:1089-1095.31向炀,周志翔.基于地理探测器的城市热岛驱动因素分析以武汉市为例 J.长江流域资源与环境,2020,29(8):1768-1779.32付含培,王让虎,王晓军,等.19992018年黄河流域NDVI时空变化及驱动力

50、分析 J.水土保持研究,2022,29(2):145-153+162.33 郭城,陈颖彪,郑子豪,等.顾及时空背景的遥感生态指数适用性分析以粤港澳大湾区为例 J .地理与地理信息科学,2021,37(5):23-30.Ecological Environment QualityAssessment and Its Influencing Factors inYangtze River Delta Based on GEECHEN Ming-yang,CHENG Yu,YANG Hong-wei,HUANG Wei-wei,YANG Dong-xue,REN Ya-ru(School of Ge

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服