ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:668KB ,
资源ID:3075967      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3075967.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(西南交通大学2016-2017第二学期概率论与数理统计期末试题及解析.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

西南交通大学2016-2017第二学期概率论与数理统计期末试题及解析.doc

1、班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线西南交通大学2016-2017学年第(二)学期期末试卷课程代码 1271031 课程名称 概率论与数理统计B( A卷)考试时间 120分钟 题号一二三四五六七总成绩得分阅卷教师签字(,;, , , , , , , )一、选择题(6*4分=24分)1、设随机变量,且满足,则等于( )。 2、设两个相互独立的随机变量与分别服从正态分布与,则( )。 3、设随机变量与的方差存在且不为0,则是和( )。(A)不相关的充分条件,但不是必要条件 (B)独立的充分条件,但不是必要条件(C)不相关的充分必要条件 (D)独立的充分必要条件4、在电炉上安装

2、了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度,电炉就断电。以表示事件“电炉断电”,设为4个温控器显示的按递增顺序排列的温度值,则事件等于事件( )。 5、将一枚硬币重复抛次,以和分别表示正面向上和反面向上的次数,则和的相关系数等于( )。 6、设随机变量,则( )。 二、解答题1、(12分)在天平上重复称一重为的物品,假设各次称量结果相互独立且同时服从正态分布。以表示次称量结果的算术平均值,试求为使,样本容量的最小值。2、(12分)某班车起点站上车人数服从参数为的泊松分布,每位乘客在中途下车的概率为,且中途下车与否相互独立。以表示中途下车的人数

3、,求:(1)在发车时有个乘客的条件下,中途有人下车的概率;(2)二维随机变量的概率分布。3、(12分)设两个随机变量与相互独立,且都服从均值为0,方差为1/2的正态分布,试求随机变量的方差。 4、(12分)假设一条生产线生产的产品合格率是0.8,要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?5、(14分)设某机床加工的零件长度 , 今抽查16个零件,测得长度(单位: mm)为: 12.15, 12.12, 12.01, 12.08, 12.09, 12.16, 12.03, 12.01, 12.06, 12.13, 12.07, 12.11, 12

4、.08, 12.01, 12.03, 12.06, 试求: (1) 的置信度为95% 的置信区间; (2) 在5%的显著性水平下,能否认为该机床加工的零件长度为12.10mm。6、(14分)设总体的概率密度为其中是未知参数,从总体中随机地抽取简单随机样本,记 ,(1)求总体的分布函数;(2)求统计量的分布函数;(3)如果用作为的估计量,讨论它是否具有无偏性。一、选择题(6*4分=24分)A,B,C, C, A,C 二、解答题1、(12分)在天平上重复称一重为的物品,假设各次称量结果相互独立且同时服从正态分布。以表示次称量结果的算术平均值,则为使,试求样本容量的最小值。解:设第次称量结果为,由题

5、设知,相互独立且同时服从正态分布,所以其算术平均值, (3分)于是 (6分)于是,查表得 ,即 。的最小值=16。 (3分)2、(12分)某班车起点站上车人数服从参数为的泊松分布,每位乘客在中途下车的概率为,且中途下车与否相互独立。以表示中途下车的人数,求:(1)在发车时有个乘客的条件下,中途有人下车的概率;(2)二维随机变量的概率分布。解:(1)因为每位乘客中途下车与否相互独立,中途下车的概率为,在发车时有个乘客的条件下,中途有人下车的概率为条件概率,再根据重贝努利概型可得: (6分) (2)因为,其概率分布为 ,于是二维随机变量的概率分布为: (6分)3、(12分)设两个随机变量与相互独立

6、,且都服从均值为0,方差为1/2的正态分布,试求随机变量的方差。解:令随机变量,因为与相互独立且同分布,则 (4分)所以, (8分) 4、(12分)假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令而至少要生产n件,则i=1,2,n,且X1,X2,Xn独立同分布,p=PXi=1=0.8.现要求n,使得即 (8分)由中心极限定理得整理得查表n270.60, 故取n=271. (4分) 5、(14分)设某机床加工的零件长度 , 今抽查16个零件,测得长度(单位: mm)为: 12.15, 12.12, 12.

7、01, 12.08, 12.09, 12.16, 12.03, 12.01, 12.06, 12.13, 12.07, 12.11, 12.08, 12.01, 12.03, 12.06, 试求: (1) 的置信度为95% 的置信区间; (2) 在5%的显著性水平下,能否认为该机床加工的零件长度为12.10mm。解:由数据计算得: , , ,置信水平 , , , ,则 的置信水平为0.95的区间估计为 (7分)本问题是方差未知的条件下, 的假设检验,故a) , b) , c)d) 的拒绝域为e) 故所以接受, 即认为该机床加工的零件长度为12.10mm。 (7分)6、(14分)设总体的概率密度为其中是未知参数,从总体中随机地抽取简单随机样本,记 ,(1)求总体的分布函数;(2)求统计量的分布函数;(3)如果用作为的估计量,讨论它是否具有无偏性。解:(1)总体的分布函数 当时,;当时,;即得 (5分)(2)的分布函数为: (5分)(3)因为的概率密度函数为 而所以不是的无偏估计。 (4分) (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服