1、 大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的P点处的电场强度的大小和电势为: (A) E=0,. (B) E=0,. (C) , . (D) ,. [ ] 2.一个静止的氢离子(H+)在电场中被加速而获得的速率为一静止的氧离子(O+2)在同一电场中且通过相同的路径被加
2、速所获速率的: (A) 2倍. (B) 2倍. (C) 4倍. (D) 4倍. [ ] 3.在磁感强度为的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为a ,则通过半球面S的磁通量(取弯面向外为正)为 (A) pr2B. . (B) 2 pr2B. (C) -pr2Bsina. (D) -pr2Bcosa. [ ] 4.一个通有电流I的导体,厚度为D,横截面积
3、为S,放置在磁感强度为B的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V,则此导体的霍尔系数等于 (A) . (B) . (C) . (D) . (E) . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I1沿y轴的正方向,I2沿z轴负方向.若载流I1的导线不能动,载流I2的导线可以自由运动,则载流I2的导线开始运动的趋势是
4、 (A) 绕x轴转动. (B) 沿x方向平动. (C) 绕y轴转动. (D) 无法判断. [ ] 6.无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感强度大小等于 (A) . (B) . (C) 0. (D) .
5、 (E) . [ ] 7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I为2.0 A时,测得铁环内的磁感应强度的大小B为1.0 T,则可求得铁环的相对磁导率mr为(真空磁导率m 0 =4p×10-7 T·m·A-1) (A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3
6、 [ ] 8.一根长度为L的铜棒,在均匀磁场 中以匀角速度w绕通过其一端O 的定轴旋转着,的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob成q 角(b为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势的大小为: (A) . (B) . (C) . (D) . (E). [
7、 ] 9.面积为S和2 S的两圆线圈1、2如图放置,通有相同的电流I.线圈1的电流所产生的通过线圈2的磁通用F21表示,线圈2的电流所产生的通过线圈1的磁通用F12表示,则F21和F12的大小关系为: (A) F21 =2F12. (B) F21 >F12. (C) F21 =F12. (D) F21 =F12. [ ] 10.如图,平板电容器(忽略边缘效应)充电时,沿环路L1的磁场强度的环流与沿环路L2的磁场强度的环流两者,必有:
8、 (A) . (B) . (C) . (D) . [ ] 二.填空题(每题3分) 1.由一根绝缘细线围成的边长为l的正方形线框,使它均匀带电,其电荷线密度为l,则在正方 形中心处的电场强度的大小E=_____________. 2.描述静电场性质的两个基本物理量是___________ ___;它们的定义式 是____________
9、 ____和__________________________________________. 3.一个半径为R的薄金属球壳,带有电荷q,壳内充满相对介电常量为er 的各向同性均匀电介质, 壳外为真空.设无穷远处为电势零点,则球壳的电势U = ________________________________. 4.一空气平行板电容器,电容为C,两极板间距离为d.充电后,两极板间相互作用力为F.则 两极板间的电势差为______________,极板上的电荷为______________. 5.真空中均匀带电的球面和球
10、体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1 与带电球体的电场能量W2相比,W1________ W2 (填<、=、>). 6.若把氢原子的基态电子轨道看作是圆轨道,已知电子轨道半径r =0.53×10-10 m,绕核运动速度大小v =2.18×108 m/s, 则氢原子基态电子在原子核处产生的磁感强度的大小为 ____________.(e =1.6 ×10-19 C,m0 =4p×10-7 T·m/A) 7.如图所示.电荷q (>0)均匀地分布在一个半径为R的薄球壳外表面上,若球壳以恒角速度w 0绕z轴转动,则沿着z轴从-∞到+∞磁
11、感强度的线积分等于 ____________________. 8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为B = 1 T的均匀磁场,观测到一个质子的径迹是半径r = 20 cm的圆弧.已知质子的电荷为q = 1.6×10 -19 C,静 止质量m = 1.67×10-27 kg,则该质子的动能为_____________. 9.真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4.当它们 通以相同电流时,两螺线
12、管贮存的磁能之比为W1 / W2=___________. 10.平行板电容器的电容C为20.0 mF,两板上的电压变化率为dU/dt =1.50×105 V·s-1,则该平 行板电容器中的位移电流为____________. 三.计算题(共计40分) 1. (本题10分)一“无限长”圆柱面,其电荷面密度为:s = s0cos f ,式中f 为半径R与x轴所夹的角,试求圆柱轴线上一点的场强. 2. (本题5分)厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为s .试求图示离左板面距离为a的一点与离右板面距离为b的一点之间
13、的电势差. 3. (本题10分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为er 的各向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差. 4. (本题5分)一无限长载有电流I的直导线在一处折成直角,P点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a,如图.求P点的磁感强度. 5. (本题10分)无限长直导线,通以
14、常定电流I.有一与之共面的直角三角形线圈ABC.已知AC边长为b,且与长直导线平行,BC边长为a.若线圈以垂直于导线方向的速度向右平移,当B点与长直导线的距离为d时,求线圈ABC内的感应电动势的大小和感应电动势的方向. 基础物理学I模拟试题参考答案 一、选择题(每题3分,共30分) 1.[A] 2.[B] 3.[D] 4.[E] 5.[A] 6.[D] 7.[B] 8.[E] 9.[C] 10.[C] 二、填空题(每题3分,共30分) 1.0 3分 2. 电场强度和电势 1分
15、 3. q / (4pe 0R) 3分 , 1分 (U0=0) 1分 4. 2分 5. < 3分 6. 12.4 T 3分 1分 7. 3分 参考解:由安培环路定理 而 , 故 = 8. 3.08×10-13 J 3分 参考解∶ 1.92×107 m/s 质子动能 3
16、08×10-13 J 9. 1∶16 3分 参考解: 10. 3 A 3分 三、计算题(共40分) 1. (本题10分)解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为 l = s0cosf Rdf, 它在O点产生的场强为: 3分 它沿x、y轴上的二个分量为: dEx=-dEcosf = 1分
17、 dEy=-dEsinf = 1分 积分: = 2分 2分 ∴ 1分 2. (本题5分)解:选坐标如图.由高斯定理,平板内、外的场强分布为: E = 0 (板内) (板外) 2分 1、2两点间电势差
18、 3分 3. (本题10分)解:设内外圆筒沿轴向单位长度上分别带有电荷+l和-l, 根据高斯定理可求得两 圆筒间任一点的电场强度为 2分 则两圆筒的电势差为 解得 3分 于是可求得A点的电场强度为
19、 = 998 V/m 方向沿径向向外 2分 A点与外筒间的电势差: = 12.5 V 3分 4. (本题5分)解:两折线在P点产生的磁感强度分别为: 方向为Ä 1分 方向为⊙
20、 2分 方向为Ä 各1分 5. (本题10分)解:建立坐标系,长直导线为y轴,BC边为x轴,原点在长直导线上,则斜边的方程为 式中r是t时刻B点与长直导线的距离.三角形中磁通量 6分 3分 当r =d时, 方向:ACBA(即顺时针) 1分 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)






