ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:331KB ,
资源ID:3073214      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3073214.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2005年考研数学二真题答案解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2005年考研数学二真题答案解析.doc

1、1.【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: =,于是 ,从而 =方法二: 两边取对数,对x求导,得 ,于是 ,故 =【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2.【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a= ,于是所求斜渐近线方程为【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当时,极限不存在,则应进一步讨论或的情形,即在右

2、或左侧是否存在斜渐近线,本题定义域为x0,所以只考虑的情形.3.【分析】 作三角代换求积分即可.【详解】 令,则 =【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等.4.【分析】直接套用一阶线性微分方程的通解公式: ,再由初始条件确定任意常数即可.【详解】 原方程等价为,于是通解为 =,由得C=0,故所求解为【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为 ,即 ,两边积分得 ,再代入初始条件即可得所求解为5【分析】 题设相当于已知,由此确定k即可.【详解】 由题设, =,得【评注】 无穷小量比较问题是历年考查较多的部分,本

3、质上,这类问题均转化为极限的计算.6【分析】 将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 =,于是有 【评注】 本题相当于矩阵B的列向量组可由矩阵A的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。一般地,若 , ,则有 7.【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当时,; 当时,;当时,即 可见f(x)仅在x=时不可导,故应选(C).【评注】 本题综合考查了数列极限和导数概念两个知识点.8. 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为,且当F(x)为偶函

4、数时,有,于是,即 ,也即,可见f(x)为奇函数;反过来,若f(x)为奇函数,则为偶函数,从而为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=, 排除(D); 故应选(A).【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系?9.【分析】 先由x=3确定t的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有,得(舍去,此时y无意义),于是 ,可见过点x=3(此时y=ln2)的法线方

5、程为: ,令y=0, 得其与x轴交点的横坐标为:, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.10【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 = = 应选(D).【评注】 被积函数含有抽象函数时,一般考虑用对称性分析. 特别,当具有轮换对称性(x,y互换,D保持不变)时,往往用如下方法:11【分析】 先分别求出、,再比较答案即可.【详解】 因为, ,于是 , , ,可见有,应选(B).【评注】 本题综合考查了复合函数求偏导和隐函数求偏

6、导以及高阶偏导的计算。作为做题技巧,也可取,则,容易验算只有成立,同样可找到正确选项(B).12.【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ,所以x=0为第二类间断点; ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:, 从而,13.【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 ,则 , .由于线性无关,于是有 当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B).方法二: 由于 ,可见,线性无关的

7、充要条件是故应选(B).【评注】 本题综合考查了特征值、特征向量和线性相关与线性无关的概念.14【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵(交换n阶单位矩阵的第1行与第2行所得),使得 ,于是 ,即 ,可见应选(C).【评注】 注意伴随矩阵的运算性质:,当A可逆时,.15 【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形.【详解】 由于,于是 = =【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则=错误的原因:f(x)未必可导.16. 【分析】

8、 利用定积分的几何意义可确定面积,再根据建立积分等式,然后求导引出微分方程,最终可得所需函数关系.【详解】 如图,有 , ,由题设,得 ,而,于是两边对y求导得 , 故所求的函数关系为: 【评注】 本题应注意点M(x,y)在曲线上,因此满足.17【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, ; f(3)=2, 由分部积分,知 = =【评注】 本题f(x) 在两个端点的函数值及导数值通过几何图形给出,题型比较新颖,综合考查了导数的几何意义和定积分的计算. 另外,值得注意的是,当被积函数含有抽象函数的导数

9、时,一般优先考虑用分部积分.18.【分析】 先将转化为,再用二阶常系数线性微分方程的方法求解即可.【详解】 , ,代入原方程,得 .解此微分方程,得 ,将初始条件代入,有. 故满足条件的特解为【评注】 本题的关键是将转化为,而这主要是考查复合函数求一、二阶导数.19.【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I) 令,则F(x)在0,1上连续,且F(0)=-10,于是由介值定理知,存在存在 使得,即.(II) 在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是 【评注】 中

10、值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式.20【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值.【详解】 由题设,知 ,于是 ,且 ,从而 ,再由f(1,1)=2,得 C=2, 故 令得可能极值点为x=0,y=0. 且 ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线上的情形:令拉格朗日函数为 ,解 得可能极值点; 代入f(x,y)得 ,可见z=f(x,y)在区域内的最

11、大值为3,最小值为-2. 【评注】 本题综合考查了多元函数微分学的知识,涉及到多个重要基础概念,特别是通过偏导数反求函数关系,要求考生真正理解并掌握了相关知识.21.【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记,于是 =+=【评注】 形如积分、等的被积函数均应当作分区域函数看待,利用积分的可加性分区域积分.22【分析】向量组可由向量组线性表示,相当与方程组:.均有解,问题转化为=是否均成立?这通过初等变换化解体形讨论即可. 而向量组不能由向量组线性表示,相当于至少有一个向量不能由表示,即至少有一方程组,无解.【详解】 对矩阵作初等行变换,有

12、= ,当a=-2时,, 显然不能由线性表示,因此;当a=4时, ,然均不能由线性表示,因此.而当且时,秩,此时向量组可由向量组线性表示.又 ,由题设向量组不能由向量组线性表示,必有或,即a=1或. 综上所述,满足题设条件的a只能是:a=1.【评注】 1)向量组不能由向量组线性表示,必有行列式:,由此也可确定a .2) 向量组能否线性表示的问题完全转化为线性方程组是否有解的问题.23.【分析】 AB=O, 相当于告之B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A的秩.【详解】 由AB=O知,B的每一列均为Ax=0的解,且(1)若k, 则

13、r(B)=2, 于是r(A), 显然r(A), 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:为任意常数.(2) 若k=9,则r(B)=1, 从而1) 若r(A)=2, 则Ax=0的通解为:为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:,不妨设,则其通解为 为任意常数.【评注】 AB=O这类已知条件是反复出现的,应该明确其引申含义:1)B 的每一列均为Ax=0的解;2)本题涉及到对参数k及矩阵A的秩的讨论,这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多. (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服