ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:64.13KB ,
资源ID:3069108      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3069108.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(因式分解提公因式法知识点归纳.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

因式分解提公因式法知识点归纳.docx

1、 因式分解-提公因式法知识点归纳 知识体系梳理 因式分解-把一个多项式变成几个整式的积的形式;(化和为积) 注意: 1、因式分解对象是多项式; 2、因式分解必须进行到每一个多项式因式不能再分解为止; 3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性; 分解因式的作用 分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。 分解因式的一些原则 (1)提公因式优先的原则即一个多项式的各项若有公因式,分解时应首先提取公因式。 (2)分解彻底的原则即分解因式必须进行到每一个多项式因式都再不能分解为止。 (3)首项为

2、负的添括号原则即如果多项式的首项系数为负,应先添上带“”号的括号,并遵循添括号法则。 因式分解的首要方法提公因式法 1、公因式 :一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 2、提公因式法 :如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的 因式提出以分解因式的方法,叫做提公因式法。 3、使用提取公因式法应注意几点: (1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。 (2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式) (3)对多项式中的每一

3、项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。 提公因式法分解因式的关键: 1、确定最高公因式;(各项系数的最大公约数与相同因式的最低次幂之积) 2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式) 典型例题、方法导航 考点一:因式分解的意义 【例1】判断下列变形哪些是因式分解? (1) -( ) (2) -( ) (3) -( ) (4) -( ) (5) -( ) 【例2】根据整式乘法与因式分解的关系连线【例3】已知关于 的多项式 分解因式为 ,求 的值。 变式议练一 1、下列从左边到右边的变形,是因式分解的是(

4、 ) A、 B、 C、 D、 2、辨析下列因式分解是否正确,若错误请改正。 (1)分解因式不彻底: (2)提出公因式后漏项: 考点二:提公因式法 【例4】分解因式: (1) (2) (3)(4) (5) 变式议练二: 1、多项式 与多项式 的公因式是 ; 2、若多项式 的一个因式是 ,那么另一个因式是( ) 、 、 、 、 3、若 是 的因式,则p为( ) A、15 B、2 C、8 D、2 4、把下列各式分解因式: (1) (2)(3) (4) 考点三:提公因式法的应用 【例5】计算:(1) (2) 变式议练三: 1、已知 , ,则 ; 2、计算: ; 3、已知 ,求 的值。 考点四:能力拓展 【例6】已知 , ,求 的值;【例7】已知: ,求代数式 的值。【例8】已知整数 、 、 使等式 对任意的 均成立,求 的值; (山东省竞赛题) 变式议练四: 1、多项式 可以分解为两个整式的积,其中一个整式为 ,求另一个整式;2、分解因式:3、(IT杯赛)化简: . 快乐体验 将一个乒乓球的半径增加 ,其周长增加 ,将地球的半径增加 ,其周长增加 ,比较 与 的大小;20 20

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服