ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:92KB ,
资源ID:3066973      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3066973.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(与中点有关的辅助线作法例析.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

与中点有关的辅助线作法例析.doc

1、与中点有关的辅助线作法例析安徽省利辛县教育局督导室夏飞线段的中点是几何图形中的一个特殊点在解决与中点有关的问题时,如果能适当地添加辅助线、巧妙地利用中点,则是处理中点问题的关键但由于含有中点条件问题的辅助线的作法灵活,不少同学难以掌握。下面就针对中点问题举例谈谈几种添加辅助线的方法一、遇到中点找中点这种方法常用于解决三角形和梯形的有关问题,主要是连接两个中点作中位线,并利用其性质因此,在三角形中,已知三角形两边中点,连结两个中点,即可构造三角形的中位线;在梯形中,已知梯形两腰中点,连结两个中点,即可构造梯形的中位线例1:如图1,E、F分别为BC、AD的中点,射线BA、EF交于点G,射线CD、E

2、F交于点H求证:分析:连接AC,并取其中点P,构造PEF,证明,再利用中位线的性质即可得证证明:连接AC,取AC的中点P,连接PE、PFE为BC的中点,PEAB,同理PFCD,由PEAB ,得,由PFCD,得说明:已知三角形一边的中点或梯形一腰的中点,常过中点作中位线二、遇到中点作中线这种方法常用于解决直角三角形或等腰三角形的有关问题,主要是运用直角三角形斜边上的中线或等腰三角形底边上的中线性质因此,遇到直角三角形斜边上的中点或等腰三角形底边上的中点,应联想到作中线例2:如图2,ABC中,AD为高,E为BC的中点,求证:分析:在ABC中,出现了RtADC和RtADB这两个直角三角形;又因为E为

3、BC的中点,即题目中有中点与直角三角形的条件按照“遇到中点找中点”的方法,可取RtADC斜边AC的中点F(或AB的中点),连接EF,即得ABC的中位线;再依据“遇到中点作中线”的方法,连接DF,即得到RtADC斜边AC上的中线,然后只要证明即可证明:取AC的中点F,连接EF、DFE、F分别为BC、AC的中点,EFAB,AD是高,ADC是直角三角形又F为斜边AC的中点,由EFAB,得又,说明:若一点是直角三角形斜边的中点或等腰三角形底边的中点,则应常想到作中线三、遇到中点倍长线段这种方法是指:若图中出现由中点引出的线段,则应常想到成倍延长这一线段,可为解题提供更为广阔的思路例3:如图3,在ABC

4、中,已知D为BC边中点,FDED于点D,交AB、AC于点F、E求证:分析:待证的线段BF、CE、EF之间没有明显关系。但点D是BC边的中点,故应考虑倍长ED(倍长FD也可)到点G,连结BG、FG,则:BGDCED,所以,又因为 FDED ,则,这样就把BF、CE、EF转移到了BFG中,再利用三角形三边关系即可证得结论证明:延长ED到G,使 点D是BC边的中点,又,BGDCED,;在FGE中,FDED,在FGE中,说明:“倍长线段”法在解题过程中有着很重要的作用,通过倍长相应的线段,再结合相应的条件可得到全等三角形,从而可转移边、角但须注意它的使用前提是已知条件中存在着线段的中点四、遇到中点,且

5、结论为比例式时,常过中点作平行线在解决有些几何问题中,尽管遇到了中点,但要证明的结论是比例式,此时可考虑过中点作平行线例4:如图4,过ABC的顶点C任作一直线,与边AB及中线AD分别交于点F、E求证:分析:AD是中线,则D为BC的中点,要证明的结论为比例式,且AE、ED又不在一个三角形内,为此,可过D点作DMAB,可知DM是BFC的中位线则有同时又可证得AEFDME,则有,接下去利用等量代换即可证得结论成立 证明:过点D作DMAB交CE于M,则:,DMAB,DM是BCF的中位线,在AEF与DME中,AEFDME,即注:此例也可按照“遇到中点找中点”的方法,取FC的中点M,然后连接DM说明:中点

6、是图形中的特殊点,中线、中位线是三角形中的特殊线段,在解题中,如果能灵活运用与它们相关的性质,巧作辅助线,可使许多问题迅速得到解决 五、遇到线段垂直平分线上的点,则常将这一点与线段的端点连接起来由于“线段垂直平分线上的点,到线段两端点的距离相等”,所以可根据这一性质定理,若遇到线段垂直平分线上的点,则常将这一点与线段的端点连接起来,往往可使问题变得简便,从而顺利证得结论成立例5、如图5,设P是等边ABC的BC边上任一点,连接AP,作AP的中垂线交AB、AC于M、N求证:分析:连接PM、PN因为MN是AP的中垂线,所以,则MPNMAN,于是有又由于,可得:,于是有BPMCNP,于是可证得证明:连接PM、PN在MPN与MAN中,MN是AP的中垂线,MN是公共边,MPNMAN(SSS),又,BPMCNP,从上述几例含有中点条件的问题可以看出,在三角形中,如果已知一点是三角形某一边上的中点,或题中已知条件出现了中点与其它条件的组合,则要由中点联想到作三角形的中线、中位线,或加倍延长线段等方法添加辅助线,然后依据相关性质,通过探索,即可迅速找到解决问题的途径或方法

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服