ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:463KB ,
资源ID:3066266      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3066266.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(DMC仿真算例.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

DMC仿真算例.doc

1、基于matlab的预测控制(DMC)仿真一、 实验目的:通过对动态矩阵控制的MATLAB仿真,发现其对直接处理带有纯滞后、大惯性的对象,有良好的跟踪性和有较强的鲁棒性,输入已知的控制模型,通过对参数的选择,来取得良好的控制效果。二、 实验原理:预测控制算法是一种基于被控对象非参数数学模型的控制算法,它是一种基于对象阶跃响应的预测控制算法,它以对象的阶跃响应离散系数为模型,避免了通常的传递函数或状态空间方程模型参数的辨识,又因为采用多步预估技术,能有效解决时延过程问题,并按预估输出与给定值偏差最小的二次性能指标实施控制,它适用于渐进稳定的线性对象,系统的动态特性中具有纯滞后或非最小相位特性都不影

2、响改算法的直接应用,因此是一种最优控制技术。三、 实验环境: 计算机,matlab四、 实验步骤 预测控制算法充分利用了反映被控对象动态行为的有用信息,对被控对象时滞和阶次变化的鲁棒性都有所提高,从而得到好的控制性能。但是由于预测控制采用模型预测的方式,其参数的选择对性能有重要的影响。合理的选择控制参数非常重要,它直接影响着系统整体的控制效果。对DMC来说,影响其性能的主要参数有以下几个。 1)采样周期T与模型长度N 在DMC中采样周期T和模型长度N的选择需要满足香农定理和被控对象的类型及其动态特性的要求。为使模型参数尽可能完整的包含被控对象的动态特征,通常要求NT后的阶跃响应输出值已经接近稳

3、定值。因此,T减小就会导致N增大,若T取得过小,N变大,会增加计算量。而适当的选取采样周期,使模型长度控制在一定的范围内,避免因为采样周期减少而使模型长度增加使计算量增加,降低系统控制的实时性。所以,从计算机内存和实时计算的需要出发,应选取合适的采样周期和模型长度。 2)预测时域长度P 预测时域长度P对系统的稳定性和快速性具有重要的影响。为使滚动优化真正有意义,应使预测时域长度包括对象的主要动态部分。若预测时域长度P小,虽控制系统的快速性好,但稳定性和鲁棒性会变差;若预测时域长度P很大,虽明显改善系统的动态性能,即控制系统的稳定性和鲁棒性变好,但系统响应过于缓慢,增加计算时间,降低系统的实时性

4、。 3)控制时域长度M控制时域长度M在优化性能指标中表示所要确定的未来控制量的改变数目,即优化变量的个数。在预测时域长度P已知的情况下,控制时域长度M越小,越难保证输出在各采样点紧密跟踪期望输出值,系统的响应速度比较慢,但容易得到稳定的控制和较好的鲁棒性;控制时域长度M越大,控制的机动性越强,能够改善系统的动态响应,增大了系统的灵活胜和快速性,提高控制的灵敏度,但是系统的稳定性和鲁棒性会变差。因此,控制时域长度的选择应兼顾快速性和稳定性。五、 实验控制算法实例仿真 被控对象模型为 分别用MAC和DMC算法进行仿真。无论是MAC还是DMC算法,它们都适用于渐进稳定的线性对象,先对该对象进行MAC

5、算法仿真,MAC预测模型为, j=1, 2, 3,P.。写成矩阵形式为,即预测误差为,参考轨迹。流程图如下1. 算法实现由于DMC算法是一种基于模型的控制,并且运用了在线优化的原理,与PID算法相比,显然需要更多的离线准备工作(1) 测试对象的阶跃响应要经过处理及模型验证后得到的模型系数a1,aN。在这里,应该强调模型动态响应必须是光滑的,测量噪声和干扰必须滤除(2) 利用仿真程序确定优化策略,计算出控制系数d1dp。(3) 选择校正系数h1hN。这三组动态系数确定后,应置入固定内存单元,以便实时调用。2.参数选择当DMC算法在线实施时,只涉及模型参数ai,控制参数di和校正参数hi。但其中除

6、了hi可以由设计者自由选择外,ai取决于对象阶跃响应特性及采样周期的选择,di取决于ai及优化性能指标,他们都是设计的结果而非直接可调参数。在设计中,真正要确定的参数应该是(1) 采样周期T(2) 滚动优化参数的初值,包括预测时域长度P,控制时域长度M,误差权矩阵Q和控制权矩阵R(3) 误差校正参数hi。3.用DMC算子进行仿真,得出ysp参考轨迹dTG(z-1)(z-1) Hy(k)u(k)e(k)W(k+1)+e(k)+0(k+1)+11-z 1Du(k)结合matlab中simulink框图和程序对对象进行仿真,得出的结果如下图所示,结论:图中曲线为使用DMC控制后系统的阶跃响应曲线。从

7、图中可看出:采用DMC控制后系统的调整时间小,响应的快速性好,而且系统的响应无超调。该结果是可以接受的。优化时域P表示我们对k时刻起未来多少步的输出逼近期望值感兴趣。控制时域M表示所要确定的未来控制量的改变数目。模型算法控制(MAC)方案设计图模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图所示:图 模型算法控制原理结构图附录clcclearNum1=0.2713;den=1 0.9;numm=0.2713;denm=1 1; %定义对象及模型的传递函数n=40;t1=0:0.1:

8、n/10;g=1*impulse(Num1,den,t1);gm=1*impulse(numm,denm,t1); for i=1:n g(i)=g(i+1);endfor i=1:n gm(i)=gm(i+1);enda=g;am=gm; N=40;p=15;M=1;m=M;G=zeros(p,m);for i=1:p for j=1:m if i=j G(i,j)=g(1); else if ij G(i,j)=g(1+i-j); else G(i,j)=0; end end end if im s=0; for k=1:(i-m+1) s=s+g(k); G(i,m)=s; end en

9、dendF=zeros(p,n-1);for i=1:p k=1; for j=(n-1):-1:1 if i=j F(i,j)=g(n); else if ij F(i,j)=0; else F(i,j)=g(i+k); end end k=k+1; end end R=1.0*eye(m); Q=0.9*eye(p); H=0.3*ones(p,1); %定义各系数矩阵e=zeros(4*N,4);y=e;ym=y;U=zeros(4*N,4);w=1; Yr=zeros(4*N,4); b=0.1;0.4;0.6;0.9; for i=1:4 for k=N+1:4*Ny(k,i)=a(

10、1:N)*U(k-1:-1:k-N,i); %求解对象输出ym(k,i)=am(1:N)*U(k-1:-1:k-N,i); %求解模型输出e(k)=y(k)-ym(k);for j=1:p Yr(k+j,i)=b(i)(j)*y(k)+(1-b(i)(j)*w;end dt=1 zeros(1,m-1)*inv(G*Q*G+R)*G*Q;U(k,i)=dt*(Yr(k+1:k+p,i)-F*U(k-N+1:k-1,i)-H*e(k);endendt=0:0.1:11.9;subplot(2,1,1); plot(t,y(N:N+119,1)hold on;plot(t,y(N:N+119,2)

11、hold onplot(t,y(N:N+119,3)hold on;plot(t,y(N:N+119,4) %t,y(N:N+119,3),t,y(N:N+119,4),t,Yr(N:N+119,1),t,w*ones(1,120);%grid on%legend(输出1,输出2,输出3,输出4,柔化曲线,期望曲线); %title(Plot of MAC);%plot(U);%grid on; % DMC.m 动态矩阵控制(DMC)Num1=0.2713;den=1 -0.8351 0 0 0 0;G=tf(Num1,den,Ts.0.4); %连续系统Ts=0.4; %采样时间 TsG=c

12、2d(G,Ts); %被控对象离散化Num1,den,=tfdata(G,v); N=60; %建模时域 Na=step(G,1*Ts:Ts:N*Ts); %计算模型向量 aM=2; %控制时域P=15; %优化时域for j=1:M for i=1:P-j+1 A(i+j-1,j)=a(i,1); endend %动态矩阵 A Q=1*eye(P); %误差权矩阵 QR=1*eye(M); %控制权矩阵 RC=1,zeros(1,M-1); %取首元素向量 C 1*ME=1,zeros(1,N-1); %取首元素向量 E 1*Nd=C*(A*Q*A+R)(-1)*A*Q; %控制向量 d=d

13、1 d2 .dph=1*ones(1,N); %校正向量 h(N维列向量)I=eye(P,P),zeros(P,N-P); %Yp0=I*YNoS=zeros(N-1,1) eye(N-1);zeros(1,N-1),1; %N*N移位阵 S sim(DMCsimulink) %运行siumlink文件 subplot(2,1,1); %图形显示plot(y,LineWidth,2);hold on;plot(w,:r,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15y,w);legend(输出值,设定值)grid on;subplot(2,

14、1,2);plot(u,g,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15u);grid on;附2 DMC程序代码%DMC控制算法% DMC.m 动态矩阵控制(DMC)num=0.2713;den=1 -0.8351 0 0 0 0;G=tf(num,den,Ts.0.4); %连续系统Ts=0.4; %采样时间 TsG=c2d(G,Ts); %被控对象离散化num,den,=tfdata(G,v); N=60; %建模时域 Na=step(G,1*Ts:Ts:N*Ts); %计算模型向量 aM=2; %控制时域P=15; %优化时域fo

15、r j=1:M for i=1:P-j+1 A(i+j-1,j)=a(i,1); endend %动态矩阵 A Q=1*eye(P); %误差权矩阵 QR=1*eye(M); %控制权矩阵 RC=1,zeros(1,M-1); %取首元素向量 C 1*ME=1,zeros(1,N-1); %取首元素向量 E 1*Nd=C*(A*Q*A+R)(-1)*A*Q; %控制向量 d=d1 d2 .dph=1*ones(1,N); %校正向量 h(N维列向量)I=eye(P,P),zeros(P,N-P); %Yp0=I*YNoS=zeros(N-1,1) eye(N-1);zeros(1,N-1),1; %N*N移位阵 S sim(DMCsimulink) %运行siumlink文件 subplot(2,1,1); %图形显示plot(y,LineWidth,2);hold on;plot(w,:r,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15y,w);legend(输出值,设定值)grid on;subplot(2,1,2);plot(u,g,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15u);grid on;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服