ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:579.50KB ,
资源ID:3046553      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3046553.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初四数学总复习辅导学习资料——几何综合题.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初四数学总复习辅导学习资料——几何综合题.doc

1、初四数学总复习辅导学习资料几何综合题一、典型例题例1(2005重庆)如图,在ABC中,点E在BC上,点D在AE上,已知ABDACD,BDECDE求证:BDCD。ABCDE 例2(2005南充)如图2-4-1,ABC中,ABAC,以AC为直径的O与AB相交于点E,点F是BE的中点(1)求证:DF是O的切线(2)若AE14,BC12,求BF的长例3.用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的RtBCE就是拼成的一个图形.EBACBAMCDM图3图4图1图2 (1)用这两部分纸片除了可以拼成图2中的RtBCE外,

2、还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的RtBCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程的两个实数根,试求出原矩形纸片的面积.二、强化训练练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知a=60,AOB=3a,OC是AOB的平分线,则AOC = _ 3.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 4.等腰RtABC, 斜边AB与斜边上的高的和是12厘米, 则斜边AB= 厘米5.已知:如图ABC中AB=AC

3、, 且EB=BD=DC=CF, A=40, 则EDF的度数为_6.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面积为8cm,则AOB的面积为 .7.如果圆的半径R增加10% , 则圆的面积增加_ .8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. ABC三边长分别为3、4、5,与其相似的ABC的最大边长是10,则ABC的面积是 .10.在RtABC中,AD是斜边BC上的高,如果BC=a,B=30,那么AD等于 .练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 A.30 B.45 C.60 D.752.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪

4、下,得到、两部分,将展开后得到的平面图形是 A矩形 B三角形 C梯形 D菱形3.下列图形中,不是中心对称图形的是 A. B. C. D.4.既是轴对称,又是中心对称的图形是 A.等腰三角形 B.等腰梯形C.平行四边形 D.线段5.依次连结等腰梯形的各边中点所得的四边形是 A.矩形 B.正方形 C.菱形 D.梯形6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是 A.相交 B.内切 C.外切 D.外离7.已知扇形的圆心角为120,半径为3cm,那么扇形的面积为 8.A.B.C三点在O上的位置如图所示,若AOB80,则ACB等于 A160 B80 C40 D209.

5、已知:ABCD,EFCD,且ABC=20,CFE=30,则BCF的度数是 A.160 B.150 C.70 D.50 (第9题图) (第10题图) 10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有 A.2对 B.3对 C.4对 D.5对 练习三:几何作图 1下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。2. 正方形网格中,小格的顶点叫做格点,小华按下列要求作图:在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;连结三个格点,使之构成直角三角形,小华在左边的正方形

6、网格中作出了RtABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。3.将图中的ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移2个单位;(2)关于y轴对称;4. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)练习四:计算题1. 求值:cos45+ tan30sin60.2如图:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm ,AD=cm.(1)判定AOB的形状. (2)计算BOC的面积.3. 如图,某

7、厂车间的人字屋架为等腰三角形,跨度AB=12米,A=30,求中柱CD和上弦AC的长(答案可带根号)ABDFEC4.如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm, BC=10cm ,求AE的长. 练习五:证明题1阅读下题及其证明过程:已知:如图,D是ABC中BC边上一点,EB=EC,ABE=ACE,求证:BAE=CAE.证明:在AEB和AEC中,AEBAEC(第一步)BAE=CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;2. 已知:点C.D在线段AB上,PCPD。请你添加一个条件,使图中存在

8、全等三角形并给予证明。所加条件为,你得到的一对全等三角形是。证明:3.已知:如图 , AB=AC , B=CBE、DC交于O点求证:BD=CE所添条件为: AB(或PAPB或ACBD或ADBC或APCBPD或APDBPC等)全等三角形为:PACPBD(或APDBPC)练习六:实践与探索1用两个全等的等边ABC和ACD拼成如图的菱形ABCD。现把一个含60角的三角板与这个菱形叠合,使三角板的60角的顶点与点A重合,两边分别与AB、AC重合。将三角板绕点A逆时针方向旋转。(1)当三角板的两边分别与菱形的两边BC、CD相交于点E、F时(图a)猜想BE与CF的数量关系是_;ABCDEF图a证明你猜想的

9、结论。ABCDEF图b(2)当三角板的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(图b),连结EF,判断AEF的形状,并证明你的结论。2如图,四边形ABCD中,AC=6,BD=8,且ACBD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去得到四边形AnBnCnDn。ABDA1CB1C1D1A2B2C2D2A3B3C3D3(1)证明:四边形A1B1C1D1是矩形; (2)仔细探索解决以下问题:(填空)(2)四边形A1B1C1D1的面积为_ A2B2C2D2的面积为_;(3)四边形AnBnC

10、nDn的面积为_(用含n的代数式表示);(4)四边形A5B5C5D5的周长为_。3.如图,在平面直角坐标系中,四边形ABCO是正方形,点C的坐标是(4,0)。(1)直接写出A、B两点的坐标。A _ B_ ABCOE(2)若E是BC上一点且AEB=60,沿AE折叠正方形ABCO,折叠后点B落在平面内点F处,请画出点F并求出它的坐标。(3)若E是直线BC上任意一点,问是否存在这样的点E,使正方形ABCO沿AE折叠后,点B恰好落在轴上的某一点P处?若存在,请写出此时点P与点E的坐标;若不存在,请说明理由。4. 已知抛物线与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧)与y轴的负半轴交于点C

11、,若,且,求外接圆的面积。 5. 已知M的圆心在x轴的负半轴上,且与x轴的负半轴交于A、B两点,OC切M于C点(A点在B点左侧,OC在第二象限),求M的半径R的长和A、B、M三点的坐标。 6.已知抛物线与x轴两个交点A、B都在原点左侧,顶点为C,是等腰直角三角形,求k的值。 7.如图,边长为4的正方形ABCD上,CE1,CF=,直线EF交AB的延长线于G,H为FG上一动点,HMAG,HNAD,设HMx,矩形AMHN的面积为y。 (1)求y与x之间的函数关系式; (2)当x为何值时,矩形AMHN的面积最大,最大是多少? 8.如图,已知四边形ABCD内接于O,A是的中点,AEAC于A,与O及CB的

12、延长线分别交于点F、E,且,EM切O于M。 ADCEBA; AC2BCCE;如果AB2,EM3,求cotCAD的值。参考答案例1证明:因为ABDACD,BDECDE。而BDEABDBAD,CDEACDCAD 。所以 BADCAD,而ADB180BDE,ADC180CDE,所以ADB ADC 。 在ADB和ADC中,BADCADADAD ADB ADC所以 ADBADC 所以 BDCD。 例2(1)证明:连接OD,AD AC是直径,ADBC ABC中,ABAC, BC,BADDAC 又BED是圆内接四边形ACDE的外角,CBED故BBED,即DEDB 点F是BE的中点,DFAB且OA和OD是半径

13、,即DACBADODAODDF ,DF是O的切线 (2)解:设BFx,BE2BF2x又BDCDBC6, 根据, 化简,得,解得(不合题意,舍去)则BF的长为2BACBAMCEM图3图4E例3答案:(1)如图(2)由题可知ABCDAE,又BCBEABAE。BC2AB,即由题意知是方程的两根消去a,得解得或经检验:由于当,知不符合题意,舍去.符合题意.答:原矩形纸片的面积为8cm2.练习一. 填空1.9 2. 90 3. 6.5 4.8 5. 70 6.2 7.21% 8.8 9.24 10. 练习二. 选择题1.B 2.D3.B 4.D5.C 6.B 7.A 8.C 9.D10.C练习三:1.3

14、略2. 下面给出三种参考画法:4.作法:(1)作点A关于直线a的对称点A(2)连结AB交a于点C则点C就是所求的点证明:在直线a上另取一点C, 连结AC,AC, AC, CB直线a是点A, A的对称轴, 点C, C在对称轴上 AC=AC, AC=ACAC+CB=AC+CB=AB 在ACB中,ABAC+CB AC+CBAC+CB即AC+CB最小练习四:计算1. 1 2.等边三角形 4 3. 2、4 4. 5练习五:证明1.第一步、推理略 2.略3. 证:A=A , AB=AC , B=CADCAEB(ASA)AD=AE AB=AC, BD=CE练习六;实践与探索1.(1)相等 证明AFDAEC即

15、可(2)AEF为等边三角形,证明略2.(1)证明略 (2)12, 6 (3) (4)3. (1)A(0,4)B(4,4)(2)图略,F(2,)(3)存在。P(0,0),E(4,0)1. (答案:)2. (答案:R=4,A(-9,0),B(-1,0),M(-5,0) )3. (答案:)4. (答案:y=- x2+8x)(答案:当时,最大,故最大面积是12)解:四边形ABCD内接于O,CDAABE,DCABAE,CADAEB 过A作AHBC于H(如图)A是中点,HCHBBC,CAE900,AC2CHCEBCCEA是中点,AB2,ACAB2,EM是O的切线,EBECEM2AC2BCCE,BCCE8 得:EC(EBBC)17,EC217EC2AC2AE2,AECADABE,CADAEC,cotCADcotAEC

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服