1、内蒙古科技大学毕业设计说明书(毕业论文)嵌入式指纹采集系统的研究与设计指纹采集与综合设计摘 要指纹采集技术是指纹识别技术中最为关键的技术之一。随着指纹传感器性能的不断提升以及指纹识别技术的发展与应用,高质量的指纹采集技术已成为一个重要的研究课题。本论文对指纹采集系统做了初步的研究及设计,主要做了以下几方面工作:首先,分析了本课题的研究现状和发展方向,阐述了本课题研究的必要性。考虑到基于ARM体系结构的芯片所具有的强大处理能力和低廉的价格,本设计采用EasyARM615开发套件和C/OS-操作系统来构建一个嵌入式指纹采集系统。而后,根据设计要求对指纹芯片进行了选型,确定了系统的总体设计方案,设计
2、了硬件开发平台;在软件方面,编写并调试了 FPS200驱动程序、指纹采集程序、串行通信程序等。最后,文中对调试过程中碰到的一些问题进行了阐述,给出了解决方法,并对进一步优化系统提出了建议。关键词:FPS200;指纹采集;C/OS-;ARM615内蒙古科技大学毕业设计说明书(毕业论文)The Investigation and Design of Embedded Fingerprint Acquisition SystemFingerprint Acquisition and Comprehensive DesignAbstractFingerprint data acquisition is
3、 the most pivotal sector in the fingerprint identification technology. As the rapid development of fingerprint sensors and the wide application of related technology, high quality fingerprint image acquisition will become a significant issue. This paper did some elementary research on embedded autom
4、ated fingerprint acquisition system, it mainly includes the following several aspects:Firstly, this paper analyses the study actuality and development direction of this task, and explains the necessity of this task. Thinking of the high performance and low cost of ARM-chip, in this paper we construc
5、t an embedded fingerprint acquisition system based on the EasyARM615 and C/OS-.Secondly, this paper selects the fingerprint chips, confirms the system overall concept, designs the hardware of the system. As the software aspect, we have designed the FPS200 driver, the fingerprint gathering procedure,
6、 the communication serial procedure and so on. At last, this paper elaborates some problems encountered in system debugging, gives methods how to solve them, and some suggestions for system optimization are also provided.Key words: FPS200; Fingerprint Acquisition; C/OS-; ARM615内蒙古科技大学毕业设计说明书(毕业论文)目
7、录摘 要IAbstractII第一章 引 言11.1 指纹识别技术概述11.2 课题研究的目的和意义21.3 指纹采集发展历史及研究现状31.3论文的主要内容4第二章 指纹采集系统总体设计52.1 指纹采集系统方案分析52.2 系统总体设计72.2.1 设计思想72.2.2 硬件设计72.2.3 软件设计82.3 指纹识别原理82.4 指纹采集技术概述92.5 本章小结12第三章 指纹采集系统硬件设计133.1 指纹传感器与处理器接口设计133.1.1 FPS200的结构与性能143.1.2 FPS200输出模式选择173.1.3 FPS200与处理器接口电路设计183.2 ARM处理器及外围
8、接口电路设计193.2.1 LM3S615芯片193.2.2 电源电路设计203.2.3 JTAG电路设计213.3 UART通信接口电路设计223.4 本章小结23第四章 指纹采集系统软件设计244.1 FPS200驱动程序设计244.1.1 FPS200初始化254.1.2 指纹检测254.1.3 读、写寄存器264.1.4 典型参数调整274.1.5 指纹图像获取274.2 ARM615开发板初始化294.2.1 系统时钟设置294.2.2 指纹检测中断入口地址设置294.2.3 SSI初始化304.2.4 串口初始化304.2.5 任务堆栈、优先级设置314.3 指纹采集程序设计324
9、.4 串行通信程序设计324.4.1 串行数据收发程序设计324.4.2 上位机通信程序设计334.5 本章小结35第五章 电路板设计与系统调试365.1 印刷电路板的设计365.1.1 PCB板设计思路365.1.2 系统抗干扰举措365.2 硬件调试365.3 软件调试375.4 本章小结39第六章 总结与展望406.1 总结406.2 展望41参考文献42附录A 原理图44附录B 源代码47致谢61 内蒙古科技大学毕业设计说明书(毕业论文)第一章 引 言1.1 指纹识别技术概述长期以来,在人类社会活动中需要验证个人身份时,传统的方法是验证该人是否持有有效的证明文件或信物,如照片、密码、磁
10、卡等。从本质上来说,这种方法验证的是该人所持有的某种“物”,而不是验证其本人。只要“物”的有效性得到确认,则持有该“物”的人的身份也就随之得到确认。这种以“物”认人办法的漏洞是显而易见的,首先:合法的人如果遗失验证其身份的“物”,则合法的人本身得不到合法的验证;其次:各种伪造证件、信物以及密码被破译或盗用又使非法的人得到合法的验证。受启发于人的身体特征具有不可复制的特点,人们开始把目光转到生物识别技术上。生物识别技术是基于个人独特的生理和行为特征进行自动身份验证的一种方法,它是随着信息技术的发展而产生和发展起来的一种新型的身份认证技术。人体的身体特征具有不可复制的特点,并且有唯一性和稳定性,这
11、是生物识别技术的基础。研究和经验表明,生物识别技术可以利用的人体生理特征有:指纹、掌纹、面孔、声音、虹膜、视网膜、骨架等等,每个人的这些特征都与别人不同,并且终生不变,因此就可以据此识别出人的身份。在这些人体特征中,人的指纹相对于其它的人体特征具有下述的特点8:1. 稳定性:指纹有很强的稳定性,并且终生不变,一个人从少年一直到老年,其指纹的特征始终是不变的。2. 独特性:指纹有明显的独特性,没有两个指纹完全相同的人,同一个人的十指指纹也有明显的不同。3. 指纹样本便于获取,指纹采集硬件设备容易实现,识别系统开发比较容易。4. 十指指纹各不相同,可以方便的构成多种信息的组合。5. 指纹模板存储的
12、不是指纹图像,而是指纹的特征点,这对系统的存储量和传输时间的要求比较低。从指纹识别技术的特点可以看出,指纹识别技术作为身份验证有着极大的优越性。指纹识别系统过去主要应用于刑侦系统,近几年来,它逐渐走向更为广泛的民用市场。它可广泛应用于电子商务身份认证、网络安全认证、银行证券身份认证、社保系统身份认证、门禁、考勤、考试身份认证等领域。可见,指纹识别技术的飞速发展及广泛应用将开创个人身份鉴别的新时代。1.2 课题研究的目的和意义现在指纹识别技术发展空间越来越广阔,但是在进行指纹识别之前,必须要采集一个清晰,可靠的指纹数据,才能为后续的识别工作打下一个良好的基础,可以说,指纹采集是指纹识别技术中最为
13、关键的一环。所以在指纹识别技术中,人们越来越重视指纹采集技术的研究。同时作为生物特征的指纹虽然稳定性很好,但是仍然存在脱皮、外伤等问题,这对高质量的指纹采集技术产生了极大的挑战,也是自动指纹识别系统研究者需要努力克服的问题。指纹采集主要分为“离线式”和“在线式”两种。所谓“离线式”就是指在指纹采集时,利用某些中间介质(如油墨和纸张)来获取指纹图像,在通过一定的技术手段将图像数字化并输入计算机,它属于非实时采集。目前“离线式”采集方式在大多数场合已经消失。所谓“在线式”是通过与计算机联机的先进指纹传感器作为专用指纹采集设备,将真实的人体指纹直接变成数字图像数据,实时传输给计算机。基于指纹传感器的
14、“在线式”实时采集设备以其操作简单、实时性强、采集效率高、图像质量好等优点,广泛应用于自动指纹识别领域6。综上所述,对于应用前景更为广泛的嵌入式自动指纹识别系统来说,指纹原始图像数据采集显得尤为重要。而从指纹技术的最前端环节指纹传感器,开发出自己特有的图像采集系统,是本课题研究的目标,也就是要实现基于ARM芯片和FPS200指纹传感器的“在线式”指纹图像采集系统。1.3 指纹采集发展历史及研究现状 指纹采集最关键的环节是指纹传感器。过去指纹传感器都是基于光学技术的传感器,这种传感器结构复杂,价格昂贵,体积庞大,造成实际系统价格非常昂贵,因此导致过去指纹识别系统仅仅限于公安、银行等少数特殊部门内
15、应用。90年代中期开始出现半导体的指纹传感器。最初的这类传感器采集的图像质量和光学传感器有较大的差距,但是随着半导体技术的进步,它采集的图像质量也越来越高,现在这两种传感器采集的图像质量差距已经很小了。半导体传感器具有价格低、体积小的优点,特别适合集成在普通的消费电子产品中,大有后来居上、取代光学传感器的趋势。现在这两类指纹传感器在市场上基本是平分天下。90年代末到现在,由于半导体指纹传感器的出现,使得指纹识别的应用领域迅速扩大,在个人电脑上、个人数字助理、掌上电脑、手机等很多领域都开始使用AFIS技术,所以指纹采集的研究重点从光学传感器转移到了半导体传感器。目前,指纹识别已经被全球大部分国家
16、接受与认可,并广泛的应用到政府、军队、银行、社会福利保障、电子商务和安全防卫等领域。在国外由于其开发指纹识别系统比较早,而且主要利用计算机进行指纹识别,所以技术比较成熟。美国在这一领域的研究水平居于世界最前沿。美国的East Shore,Digital Persona,Veridicom等公司都有自动指纹识别产品面世。自1998年以来,我国在指纹识别应用研究方面发展迅速,核心技术与国外差距不大,国内的部分研究成果在国际上具有先进甚至领先水平。中科院自动化所田捷研究员领导的生物特征研究小组开发的指纹识别算法在FvC2004国际指纹识别竞赛中取得了优异的成绩,在国际同行中很有影响。但在应用技术特别
17、是硬件采集技术上,国内与国外存在着较大的差距。国内上百家从事指纹识别技术应用的企业除了北大高科,中科院自动化所和西安青松等几家科研机构拥有自主产权外,其它的多以代理国外产品为主,拥有自主知识产权的核心技术不多。在性能方面,无论从精度上还是从效率上来看,均不如国际领先的同类产品。以指纹采集的硅芯片为例,国际上的几大厂商几乎垄断了国内所有的市场。而相对容易切入的光学采集仪,高端市场也基本为国际厂商所垄断10。1.3论文的主要内容第1章 引言介绍了指纹识别技术,课题研究的目的和意义及指纹采集的研究现状。 第2章 指纹采集系统总体设计介绍了系统的总体设计,指纹识别原理和指纹采集技术第3章 指纹采集系统
18、硬件设计介绍了系统的硬件设计,具体介绍了每个功能模块的芯片选型,接口电路原理图的设计。第4章 指纹采集系统软件设计介绍了系统的软件设计,重点设计了FPS200驱动程序、系统初始化程序、指纹采集程序及上位机通信程序。第5章 电路板设计与系统调试介绍了在调试系统过程中遇到的问题、解决问题的方法以及一些心得体会。第6章 总结与展望主要总结了设计所取得的成果,并为后续研究提出了一些建议。第二章 指纹采集系统总体设计2.1 指纹采集系统方案分析指纹采集系统可以用51单片机、数字信号处理器、ARM处理器等实现,具体方案分析如下: 方案1:基于51系列单片机指纹采集系统图2.1 基于51系列单片机指纹采集系
19、统框图基于51系列单片机的指纹采集系统原理框图如图2.1所示,该系统采用51单片机作为控制核心。其中FPS200采用MCU模式接口, 指纹数据通过8位并行方式经控制器, 暂存于外扩的数据存储器。采集完一整幅图像后通过串口传到PC机上做后续处理。该指纹采集系统能够简便、快速、低成本的获取可靠的原始指纹灰度图像,但由于控制芯片性能的限制,不能嵌入操作系统,系统实时性、稳定性较差。 方案2:基于数字信号处理器的指纹采集系统基于DSP数字信号处理器的指纹采集系统原理框图如图2.2所示。该系统以指纹传感器FPS200为采集头,以数字信号处理器DSP为控制和计算核心。由于DSP处理器具有很强的数学计算能力
20、,非常适合乘法和加法的计算,可以在指纹采集系统中实现指纹图像的预处理,而且不会影响指纹采集速度。但是DSP处理的控制能力比较差,而且价格比较昂贵,适于高端指纹识别系统的开发。图2.2 基于DSP处理器的指纹采集系统框图 方案3:基于ARM处理器的指纹采集系统图2.3 基于ARM处理器的指纹采集系统框图基于ARM处理器的指纹采集系统原理框图如图2.3所示。该系统以指纹传感器FPS200为采集头,以ARM处理器为控制核心。由于ARM处理器实时性、稳定性比较强,而且可以嵌入实时操作系统,因而该指纹采集系统比较稳定,但ARM处理器在数字图像处理方面有缺陷,不适于指纹图像处理,指纹图像的处理可以在上位机
21、中实现。本设计采用方案3进行设计,用ARM处理器和FPS200指纹传感器实现指纹采集,指纹图像的处理和显示在PC机中实现。2.2 系统总体设计2.2.1 设计思想指纹采集系统框图如图2.4所示。本设计采用ARM开发板和指纹传感器作为硬件开发平台,在ARM开发板上植入C/OS-操作系统,编写FPS200驱动程序、uart驱动程序等,并再此基础上编写应用程序,实现指纹图像的采集。本系统可分为硬件设计和软件设计两大部分。图2.4 指纹采集系统框图2.2.2 硬件设计图2.5 硬件系统框图硬件系统框图如图2.5所示。从图中可以看到,本系统主要有三部分组成:指纹传感器、ARM处理器和PC机。系统硬件设计
22、分为三部分:FPS200与处理器接口设计、ARM处理器及外围接口设计、UART通信接口设计。系统各部分功能如下:1. 指纹传感器:采集指纹图像,将指纹图像数字化,并将指纹数据传给ARM处理器。2. ARM处理器:控制指纹传感器采集指纹图像,将指纹数据上传给PC机。3. PC机:接收ARM处理器上传的指纹数据,显示指纹图像,并设置指纹传感器参数。2.2.3 软件设计为了加快开发的进度,提高系统的可靠性和稳定性,系统采用C/OS-嵌入式操作系统。C/OS-是源代码公开的嵌入式实时操作系统,它是专为微控制器系统和软件开发而设计的多任务操作系统内核,是一段微控制器启动后首先执行的背景程序,并作为整个系
23、统的框架贯穿系统运行的始终。它具有可移植性强、可裁减、完全抢占式多任务的实时内核、任务栈、系统服务、可固化、稳定性、中断管理等特点,对于对实时性和稳定性要求很高的指纹系统来说,引入C/OS-无疑将大大改善其性能。基于C/OS-编写应用程序是以“任务”为模块的,每个任务是独立的子功能模块,即为一个比较特殊的函数(不返回值),主体也是个无限循环。本系统的任务划分为:taskStart()、taskFinger()、taskUart(),其优先级和功能如表2-1所示。表2-1 指纹采集系统任务优先级及功能任务优先级功能taskStart()0初始化开发板(包括时钟初始化、ssi初始化、FPS200中
24、断入口初始化等)、uart、定时器,创建taskFinger()和taskUart()taskFinger()1采集指纹数据并将指纹数据上传给PC机taskUart()2与PC机进行通信,接收PC机命令,设置FPS200的参数2.3 指纹识别原理 认识指纹采集的重要性,首先要对指纹识别原理有所了解。 指纹是手指末端正面皮肤上凸凹不平产生的纹路。尽管指纹只是人体皮肤的一小部分,但是,它蕴涵大量的信息。指纹特征可分为两类:总体特征和局部特征。总体特征是指那些用人眼就可以直接观察到的特征,包括基本纹路图案、模式区、核心点、三角点、式样线和纹数等。基本纹路图案有环型、弓型、螺旋型。局部特征是指指纹上的
25、特征点,即指纹纹路上的终结点、分叉点和转折点5。两枚指纹经常会有相同的总体特征,但它们的局部特征(即特征点)却不可能完全相同,因此,指纹识别技术通常使用指纹的总体特征如纹形、三角点等来进行分类,在用局部特征如位置和方向等来进行识别用户身份。通常,首先从获取的指纹图像上找到“特征点”(minutiae),然后根据特征点的特性建立用户活体指纹的数字表示指纹特征数据库(一种单向的转换,可以从指纹图像转换成特征数据,但不能从特征数据转换成指纹图像)。由于两枚不同的指纹不会产生相同的特征数据,所以通过对所采集到的指纹图像的特征数据和存放在数据库中的指纹特征数据进行模式匹配,计算出他们的相似程度,最终得到
26、两枚指纹的匹配结果,根据匹配结果来鉴别用户身份5。总之,指纹识别技术首先通过读取指纹图像,然后利用计算机识别软件提取指纹的特征数据,最后通过匹配识别算法得到指纹识别结果。其基本原理框图如图2.6所示图2.6 指纹识别原理框图2.4 指纹采集技术概述指纹识别技术的进步和指纹传感器技术的发展密切相关。随着半导体技术的进步,指纹传感器从结构复杂,价格昂贵,体积庞大的基于光学技术的传感器,发展到90年代中期开始出现的半导体指纹传感器,价格越来越低、体积也越来越小,而采集的图像质量却越来越高。下面简单介绍一下这几类指纹传感器。1. 光学指纹传感器基于光学技术的传感器都是利用了光学全反射技术。光学全反射技
27、术的原理是:光线照射到压有指纹的玻璃表面时,由CCD获得反射光线,反射光的数量依赖于压在玻璃表面的手指指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分。光线经玻璃照射到指纹的谷的地方后,在玻璃与空气的界面发生全反射,光线被反射到CCD,照射向指纹的脊的光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,于是就在CCD上生成了指纹图像。光学指纹传感器生产厂商如国外的Identix、SecuGen等公司,国内的长春光机所为刑侦部门研制的光学传感器也具有相当高的水平。如图2.7所示,就是长春方圆公司生产的一种光学指纹传感器。2. 电容式指纹传感器电容式传感器是在单个晶片上集成了10多万个
28、电容传感器,其外面是绝缘的表面,手指放在上面时,手指皮肤组成了电容阵列的另一极,电容器的电容值由于指纹的脊和谷相对于另一极的距离不同而不同。通过测量空间中不同的电容值而得到完整的指纹图像。该类型较典型的产品为Veridicom公司的FPS110、FPS200指纹传感器,如图2.8所示。在指纹采集过程中,根据反馈信息调节电容放电时间等参数以增强其灵敏度。它的面积只有1.51. 28cm2,集成90000个电容,且带有高速A/D转换器件,该产品的分辨率为500DPI。系统提供USB接口、SPI接口和8位并行数据总线接口。 图2.7 光学指纹传感器 图2.8 电容式指纹传感器FPS2003. 温度指
29、纹传感器温度传感器通过感应压在传感器设备上的指纹的脊和谷的温度来获得指纹图像。目前世界上最小的温度传感器是法国Atmel公司生产的Finger Chip系列的FCD4B14,如图2.9所示。它外形小,敏感区域只有0.4mm14mm,通过手指扫过传感区域获取指纹图像,可承受一百万次的指头滑动动作,并且使用休眠方式管理电源,功耗小,成本较低。4. 压力指纹传感器压力传感器其表面的顶层是具有弹性的压感介质材料,他们依照指纹的外表地形转化为相应的电子信号。压力传感器的特点是成本低、体积小、耗电量少,但易受干扰,表面材料耐磨损能力差。如图2.10所示是日本BMF Corporation公司生产的BMFl
30、00,它包括传感器BLP-100和控制器BCT-100。 图2.9 热敏指纹传感器FCD4B14 图2.10 压力指纹传感器BLP-1005. 超声波指纹传感器超声波扫描指纹的表面后,接收设备获得指纹对超声波的反射信号,然后根据指纹脊和谷的反射信号重构出指纹图像。超声波扫描不像光学扫描,积累在手指皮肤上的污物和油脂对超声波影响不大,可以得到高品质的指纹图像,Ultra-Scan是首家推出超声波采集传感产品的公司。但是由于成本较高,限制了该技术的推广应用。表2-2是这几种传感器性能的比较。表2-2 传感器性能比较光学扫描技术半导体传感器超声波扫描技术成像能力干手指差,汗多的和稍胀的手指成像模糊;
31、易受皮肤上的赃物和油脂的影响干手指好潮湿、粗糙的手指亦可以成像;易受皮肤上的赃物和油脂的影响非常好成像区域大小中分辨率低于500DPI可高达600DPI可高达1000DPI设备体积大小中耐用性非常耐用较耐用一般功耗较大小较大成本较高低很高2.5 本章小结本章主要介绍指纹采集的总体设计。首先分析了指纹采集系统的各种方案,然后介绍了总体设计方案,最后对指纹识别原理和指纹采集技术进行了阐述。第三章 指纹采集系统硬件设计整个指纹采集系统的设计分为两部分:硬件设计和软件设计。本章将详细的介绍系统的硬件设计。从系统每一个具体的功能模块介绍其芯片的选型和接口电路。本系统硬件电路的绘制使用Prote1 DXP
32、软件,主要有三个模块组成:指纹数据采集模块、微处理器模块和串行通信模块。本章将逐步讲述以上三大模块的硬件设计以及ARM的外围电路设计。3.1 指纹传感器与处理器接口设计目前,市面上有很多种电容式指纹传感器,例如富士通公司的MBF200、MBF300,意法半导体公司出品的TCS1CD Touch Chip,Veridicom公司的FPS100、FPS200,本设计采用的是FPS200。FPS200由256300电容传感阵列组成,分辨率高达500点/英寸,封装尺寸仅24mm24mm 1.4mm,传感面积为1.28 cml.5 cm,操作电压为3. 35 V,内部集成8位A/D转换器。FPS200是
33、一种触摸式CMOS传感器件,基于电容充放电原理,其外面是绝缘的表面,传感器阵列的每一点是一个金属电极,充当电容器的一极,当人把手指放在传感器上时,手指充当电容器的另外一极,而两者之间的传感面形成电容两极之间的介电层,由于指纹的脊和谷相对于另一极之间的距离不同,导致硅表面电容阵列的各个电容值不同,电容阵列的值描述了一幅指纹图像。FPS200每一列有2组采样保持电路。指纹采集是按行实现的,选定一行,对该行所有电容充电,用采样保持电路保存电压值平;然后放电,用另一组采样保持电路保存剩余电压值。2组电压差值通过内置的8位模数转换器转换,就可以获得具有灰度级的指纹图像。与其它的指纹传感器相比,FPS20
34、0具有以下特点:1. 坚固耐用的芯片表层。FPS200表面运用专利技术制成,表面涂层异常坚固耐用,能承受超过8KV的静电放电,即便在恶劣的环境中也能正常的使用。2. 采用低功耗设计。FPS200具有手指自动检测功能,允许主机在没有指纹时处在低功耗待命模式,当有手指时才唤醒主机进行处理,从而节省整个系统的功耗。3. 适应更复杂的手指识别。FPS200的图像搜索功能(Image seek TM)通过改变电容阵列的参数值可在1秒种以内扫描多幅指纹图像并自动选择最好的一幅。因此FPS200可以获得各种类型手指的高质量图像,大大降低了误识率(FAR)和拒识率(FRR)。4. 提供三种接口,更易于集成。(
35、1) SPI:FPS200内置的SPI接口减小了FPS200对硬件的依赖,只需6条线就可以与带SPI接口的微处理器连接。在SPI模式下,FPS200的图像传输速度为10帧/秒。(2) USB:FPS200内置了高速USB核电路,外部不再需要其它USB控制器,因此可作为标准的USB设备来使用。在USB模式下,FPS200的图像传输速度为13帧/秒。(3) MCU:通过自动增加行列地址寄存器的值以及模数转换的路径优化功能,标准8位微处理器总线的性能大大加强,图像传输速度达到30帧/秒,可以满足连续指纹图像的采集和比对。3.1.1 FPS200的结构与性能FPS200内部结构图如图3.1所示。从结构
36、图中可以看出其中256300点传感阵列用于产生感应电压;功能寄存器用于对芯片进行操作控制;控制电路用于传感器与外部接口电路的控制,主要负责数据的读出与写入;地址索引寄存器与数据寄存器分别用于对功能寄存器的地址选择及数据的读写;采样保持及A/D转换电路用于对传感阵列所产生的电压进行采样。另外,多频振荡电路用于为芯片提供时钟信号。其具体的引脚功能含义如下3:图3.1 FPS200内部控制逻辑电路 P0,P1为输出端口,分别由寄存器CTRLC的位0和位1来控制。 D 7:0 为双向数据总线,在SPI和USB模式下处于断开状态。A0为地址输入端,低电平时表示选择索引寄存器,高电平时表示选择数据缓冲器,
37、在SPI和USB模式下处于断开状态。 RD-为读允许端,低电平有效。当WR为高电平时使RD为低电平就可以选中芯片从芯片中读取数据了。 WR-为写允许端,低电平有效。当RD-为高电平时,使WR-为低电平就可以选中芯片向芯片中写入数据了。 WAIT-为等输出端口,低电平有效。当读取A/D转换器内容时,如果A/D转换器还处于工作过程中,则WAIT-将变成低电平,表示需要等待A/D转换器完成转换才能读取数据。 CS0为低电平有效的芯片选择端,CS1为高电平有效的芯片选择端,CS0和CS1引脚的功能是由MODE0和MODE1这两个引脚的状态决定的。 MOSI和MISO是SPI模式下的输入输出引脚,其具体
38、状态也是由MODE0和MODE1这两个引脚的状态决定的。 DP和DM分别为USB的D和D端的数据线,在USB模式下,DP和VDD3之间必须连接一个大小为1.5K的电阻,而VDD3的电压必须保证在3.3到3.6V之间。DP和DM都要加一大小为43欧姆的串联电阻。另外,在MCU和SPI模式下,这两个引脚可分别加一上拉电阻至电源或接地。 EXTINT为外部中断输入引脚,是可编程引脚,可以边缘触发也可以电平触发,可以高电平有效也可以低电平有效。在芯片的三种工作模式中可以处于断开状态。 INTR-为低电平有效的中断输出引脚,在无效状态下INTR-处于高阻状态,当有中断使能事件发生时被置为低电平。INTR
39、-只能在MCU和SPI模式下使用,在USB模式下应处于断开状态。 TEST为测试模式允许端,仅为生产厂家使用,用户使用时直接将此引脚接至VSS引脚即可。 MODE0和MODE1为芯片工作模式的选择端,两者不同的取值组合将决定芯片不同的工作模式。 AIN为输入到A/D转换器的模拟信号输入端,可通过设置CTRLA寄存器中的位AINSEL来实现。特别建议通过一个电阻将此引脚接地。 可以通过在ISET和模拟地VSSA1之间接一个大小为200K的电阻来设置内部电流,放电电流是内部电流的一个。 可以通过在FSET和地之间接一个电阻来设置内部多谐振荡器和自动指纹检测频率。这里我们使用56K大小的电阻,这样获
40、得振荡器的频率为12MHZ,指纹的自动检测采样频率将是120KHZ。 XTAL1和XTAL2为内部晶体振荡器的输入和输出端。系统如果使用内部晶体振荡器,则直接将晶振电路与这两个引脚相连即可,若是用外部晶体振荡器,XTAL1引脚直接接外部晶体振荡器的输出端,而XTAL2引脚处于断开状态。3.1.2 FPS200输出模式选择FPS200支持三种接口形式和四种操作模式,这四种操作模式相互独立,不能同时工作。FPS200通过MODE1:0管脚来控制输出这四种状态。FPS200的操作模式如表3-1所示3。表3-1 FPS200操作模式MODE0,1描述00MCU接口模式01SPI接口模式10USB模式,
41、用内部ROM11USB模式,用外部ROM在微处理器接口模式中,可将FPS200与ARM相连,且其接口形式非常简单。需要说明的是,在该芯片中,地址选择与数据写入是分两步完成的,先通过A0置0来写地址索引寄存器,然后再对A0置1来读写对应地址的数据寄存器;SPI是工业标准的同步串行接口,它允许8位数据同时、同步地被发送和接收,而且只用到的信号:SCLK,SCS-,MOSI,MISO,EXTINT。可将系统配置为SPI主操作(Master)与从操作(Slave),其接口形式与一般的串行外围接口方式一致,故此不再赘述;USB接口有两种模式:一种是用芯片内部的ROM来存储设备信息,一种是用外部串行ROM
42、来存储设备信息。本设计选用SPI接口模式对指纹数据进行采集。3.1.3 FPS200与处理器接口电路设计 图3.2 EasyARM615与FPS200硬件接口框图图3.3 FPS200接口电路采集器与处理器的接口设计是指纹采集的核心。本系统用EasyARM615的SSI接口与FPS200的SPI接口连接,采用SPI总线技术进行通信。FPS200的SPI接口的通信速度最高可以达到10Mbps。硬件接口框图如图3.2所示。从图中可以得知,EasyARM615作为SPI主设备,FPS200作为SPI从设备。基于SPI模式的FPS200接口电路设计如图3.3所示。从图中我们可以看到,MODE0接地,M
43、ODE1接高电平,使FPS200工作在模式0(SPI模式);P0、P1分别通过限流电阻接LED,用于显示FPS200的工作状态;DM、DP分别通过10K电阻接地;SPI总线SCLK、SCS-、MOSI、MISO分别通过10K上拉电阻接高电平,用于数据的传输。FPS200接口电路设计参见附录A。3.2 ARM处理器及外围接口电路设计3.2.1 LM3S615芯片Luminary Micro Stellaris系列微控制器是首款基于ARM Cortex-M3 的控制器,它将高性能的32 位计算引入到对价格敏感的嵌入式微控制器应用中。这些堪称先锋的器件,价格与8 位和16 位器件相同,却能为用户提供
44、32 位器件的性能,并且所有器件都是以小型封装的形式提供。图3.4 LM3S615芯片Stellaris 系列的LM3S615微控制器(如图3.4所示)拥有ARM 微控制器所具有的众多优点,如拥有广泛使用的开发工具,片上系统(SoC)的底层结构IP 的应用,以及众多的用户群体。此外,控制器还采用了ARM 可兼容Thumb的Thumb-2 指令集来降低内存的需求量,进而降低成本1。3.2.2 电源电路设计EasyARM615开发套件采用5V供电。电源插座采用2.1mm插座,供电极性采用外正内负,外部供电电源的电流要求不少于500mA。该开发套件采用USB接口供电,标配有USB电源适配器。电源电路
45、如图3.5所示。5V电源通过插座进入到开发套件后,先经过二极管D1,D1的作用是防止用户提供极性相反的电源烧坏硬件。F1为一个电流为500mA的自恢复保险丝SMD050,电源经过F1后,通过TVS管SMBJ5.0A与电源地连接。当误插入大于6V电源时,SMBJ5.0A管导通,SMBJ5.0A管将电压限制在5V左右,保护板上的其它器件不被损坏;当电流大于500mA时,自恢复保险丝SMD050电阻变得很大,保护电源不被损坏。图3.5 电源电路IN5819的差压为0.3V,所以供给3.3V电源转换电路的电压为4.7V,经过电压转换电路可以给系统其它芯片提供3.3V工作电压,如图3.6所示。图3.6中
46、的C1,C2,C3,C4和C5电容起到滤波作用,而D3发光二极管作为电源指示灯,开发套件上电后D3就被点亮。图3.6 3.3V稳压电路3.2.3 JTAG电路设计JTAG(Joint Test Action Group联合测试行动小组)是一种国际标准测试协议(IEEE 1149.1兼容),主要用于芯片内部测试。它是1985年制定的检测PCB和IC芯片的一个标准,1990年被修改后成为IEEE的一个标准,即IEEE1149.11990。通过这个标准,可对具有JTAG接口的芯片的硬件电路进行边界扫描和故障检测。现在多数的高级器件都支持JTAG协议,如ARM、DSP、FPGA器件等。标准的JTAG接
47、口是4线:TMS、TCK、TDI和TDO,分别为模式选择、时钟、数据输入和数据输出线。JTAG最初是用来对芯片进行测试的,基本原理是在器件内部定义一个TAP(Test Access Port:测试访问口),通过专用的JTAG测试工具对内部节点进行测试。JTAG测试允许多个器件通过JTAG接口串联在一起,形成一个JTAG链,能实现对各个器件分别测试。现在,JTAG接口还常用于实现ISP(InSystem Programmable:在线编程),对FLASH等器件进行编程。具有JTAG接口的芯片其相关引脚的定义为:TCK为测试时钟输入;TDI为测试数据输入,数据通过TDI引脚输入JTAG接口;TDO为测试数据输出,数据通过TDO引脚从JTAG接口输出;TMS为测试模式选择,TMS用来设置JTAG接口处于某种特定的测试模式;TRST为测试复位,输入引脚,低电平有效。JTAG编程方式是在线编程,传统生产流程中先对
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100