ImageVerifierCode 换一换
格式:PDF , 页数:22 ,大小:51.79MB ,
资源ID:3032955      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3032955.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(碳基无金属纳米材料用于电催化合成小分子化学品.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

碳基无金属纳米材料用于电催化合成小分子化学品.pdf

1、Cite this:NewCarbonMaterials,2024,39(1):42-63DOI:10.1016/S1872-5805(24)60836-XCarbon-based metal-free nanomaterials for the electrosynthesis ofsmall-molecule chemicals:A reviewSHILei1,2,LIYan-zhe1,YINHua-jie2,*,ZHAOShen-long1,*(1.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,National

2、 Center for Nanoscience and Technology,Beijing 100190,China;2.CAS Key Laboratory of Materials Physics,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China)Abstract:Electrocatalysisisakeycomponentofmanycleanenergytechnologiesthathasthepo

3、tentialtostorerenewableelectri-cityinchemicalform.Currently,noblemetal-basedcatalystsaremostwidelyusedforimprovingtheconversionefficiencyofreact-antsduringtheelectrocatalyticprocess.However,drawbackssuchashighcostandpoorstabilityseriouslyhindertheirlarge-scaleuseinthisprocessandinsustainableenergyde

4、vices.Carbon-basedmetal-freecatalysts(CMFCs)havereceivedgrowingattentionduetotheirenormouspotentialforimprovingthecatalyticperformance.Thisreviewgivesaconcisecomprehensiveoverviewofre-centdevelopmentsinCMFCsforelectrosynthesis.First,thefundamentalcatalyticmechanismsanddesignstrategiesofCMFCsareprese

5、ntedanddiscussed.Then,abriefoverviewofvariouselectrosynthesisprocesses,includingthesynthesisofhydrogenperoxide,ammonia,chlorine,aswellasvariouscarbon-andnitrogen-basedcompoundsisgiven.Finally,currentchallengesandprospectsforCMFCsarehighlighted.Key words:Electrosynthesis;Electrocatalysis;Carbon-based

6、nanomaterials;Metal-freeelectrocatalysts;Small-moleculechemicals1IntroductionChemicalmanufacturingheavilyreliesonfossilfuelsforitsenergyneeds,whichconstitutesasignific-antportionoftheworldsenergydemand1.Giventheescalatingenergycrisisandenvironmentalconcerns,thereisanurgentneedtodevelopclean,low-cost

7、andefficientrenewableenergytechnologiestoreplacethetraditionalchemicalmanufacturingprocesses.Electro-synthesisemergesasapromisinggreenstrategy,util-izingcleanelectricitytodriveelectrochemicalreac-tionsforchemicalsynthesis.Unlikeconventionalin-dustrialsynthesismethodswithhighenergyconsump-tion,electr

8、osynthesistechnologieseffectivelyreducetheenergybarriersofelectrochemicalreactions,thusenabling the synthesis of valuable chemicals undermilderconditions.Asaresult,thedirectelectrochem-icaltransformationofabundantrawingredients,suchasH2O,CO2,O2andN2,intohigh-value-addedchem-icalsandfuelshasattracted

9、increasingattention2.Inthesesystems,electrocatalystsplayapivotalroleinincreasingreactionefficiencyandregulatingproductselectivity35.This inherent capability makes cata-lystsindispensable in various electrochemical reac-tions,includingtheoxygenreduction/hydrogenoxida-tionreaction(ORR/HOR)infuelcells6

10、9,hydrogenandoxygenevolutionreaction(HER/OER)inphoto-/electro-watersplitting1014,carbondioxidereductionreaction(CO2RR)intheartificialcarboncycle1516,nitrogenreductionreaction(NRR)inartificialnitro-gen fixation1719,and other electrosynthesis pro-cessesforgeneratinghigh-value-addedchemicals2022.Curren

11、tly,noblemetal-basedcatalystsarecommonlyemployedtoenhancetheconversionefficiencyofre-actantstoproductsduringtheelectrocatalyticprocess.However,thedrawbackssuchashighcostandpoorstabilityseriouslyhindertheirlarge-scaleapplicationsinelectrosynthesisandsustainableenergydevices2325.Therefore,itishighlyde

12、sirabletodevel-opcost-effectiveelectrocatalystsforovercomingtheseReceived date:2023-10-29;Revised date:2023-12-17Corresponding author:YINHua-jie,Professor.E-mail:;ZHAOShen-long,Professor.E-mail:Author introduction:SHILei,Postdoctoral.E-mail:;LIYan-zhe,Researchassistant.E-mail:Homepage:http:/ advanci

13、ng the progress of electro-chemicaltechnologies.Carbon-basedmetal-freecatalysts(CMFCs)ex-hibituniquephysicalandchemicalproperties,includ-ingcontrollabledimensions,largesurfacearea,excep-tionalconductivity,substantialporosity,andexcellentchemical stability.Their tunable structures,rangingfrom 0D to 3

14、D,offer an ideal platform for precisedesignandeffectiveintegrationofdynamicreactioninterfaces.Additionally,their compositions can bepreciselycontrolledthroughelementdopingorchem-icalfunctionalization,resultinginimprovedcatalyticactivity and enabling exploration of their structure-activity relationsh

15、ips at the atomic/molecular level.ThestrongcovalentbondsinCMFCsgrantexception-alchemicalstabilitywhichensureslong-termcatalyt-icperformance.Furthermore,variouseffectivemeth-odologies,suchasballmilling,chemicalvapordepos-itionand chemical modification,have been estab-lished for creating CMFCs,providi

16、ng an optimalfoundationforthedesignofhigh-performanceelec-trocatalysts.These features enable CMFCs to be ahighly promising alternative to noble or transitionmetal-basednanomaterials26.The development of highly efficient CMFCsholdsgreatpromiseformakingasignificantbreak-throughin electrocatalysis.In 2

17、009,Dai and col-leaguesintroducedanewbranchofmetal-freecata-lysisbydevelopingnitrogen-dopedvertically-alignedcarbonnanotubes(N-dopedVA-CNTs)asahigh-per-formance CMFC for ORR27.The enhanced ORRactivityisattributedtochargetransferinducedbyN-doping,alteringtheadsorptionmodeofoxygenmo-lecules and facili

18、tating the ORR process(Fig.1a).Subsequently,this principle of modifying intrinsiccatalyticpropertieshasbeenwidelyappliedindesign-ingefficientCMFCstoenhancethecatalyticperform-ance in electrocatalysis and sustainable energydevices2832.For instance,the carbon-based metal-freenanomaterialshavedemonstra

19、tedpromisingper-HCNOHSiBPCSeSIBrNCIOF1.51.00.50.51.0Electronegativity()Charge redistributionCharge-spin couplingSiBPC SI*Br*N ClOFSpin redistribution(vs.C)0Before ORRNN(a)(b)(c)(d)OHpyridinic-N398.5 eVAfter ORRpyridonic-N400.2 eVFig.1(a)CalculatedchargedensitydistributionofN-dopedCNTsandthecorrespon

20、dingadsorptionmodesofoxygenmolecule27.Reproducedwithpermis-sionfromAAAS.(b)ReactionprocessbetweenpyridinicNandOHspecies.(c)ProposedmechanismforORRonnitrogen-dopedcarbonmaterials59.Repro-ducedwithpermissionfromAAAS.(d)Heteroatom-dopingmechanisminCMFCs60.ReproducedwithpermissionfromWiley-VCH第1期SHILeie

21、tal:Carbon-basedmetal-freenanomaterialsfortheelectrosynthesisofsmall-molecule43formance in ORR26,3335,HER3637,OER3839,CO2RR40,NRR41,bi-functional4249andmulti-func-tional catalysis5052.Moreover,many CMFCs havebeenproventobestableandeffectivemultifunctionalelectrodesinapplicationssuchashydrogenperoxid

22、ephoto-electrochemical production5354,Zn-air batter-ies5556,andwatersplitting9,50.ThesebreakthroughsinCMFCsholdgreatpromiseforthedevelopmentofaffordableanddurablecatalystsforvariouskeyreac-tionsinvolvedinenergyconversionandelectrosyn-thesistechnologies31,57.ConsideringthecomprehensivereviewsonCM-FCs

23、forHER,four-electronORRandOER26,3237,thisreviewshiftsthefocustowardtheapplicationofCM-FCsforadvancedchemicalelectrosynthesis,suchashydrogen peroxide,multi-carbon fuels,ammonia,urea,andothersmall-moleculechemicals.BasedonthebroadinterestinCMFCsforelectrocatalysis,wefirstdiscussthemechanismunderstandi

24、ng,anddesignstrategiesrelatedtoCMFCs.Subsequently,itdelvesintotheapplicationofCMFCsinvariouselectrosyn-thesisreactions,involvingtwo-electrontransferORRand water oxidation reaction(WOR)for hydrogenperoxide(H2O2)production,multi-electron transferCO2RRandNRRforcarbon-andN-basedchemicals,and other elect

25、rosynthesis of emerging small-mo-leculechemicalssuchaschlorineandurea.Finally,weproposetheemergentchallengesandfuturedevel-opments of CMFCs.This review aims to providereaderswithdeeperinsightintotheintelligentdesignofCMFCswithhighactivity,exceptionalselectivityandlong-termstability.2Mechanismunderst

26、andingTomodulatetheelectrocatalyticactivityofCM-FCs,avarietyofapproacheshavebeendeveloped,in-cluding heteroatom doping,intermolecular chargetransfer and defect generation32.These strategieshavedemonstratedeffectivenessinalteringcharge/spindistributionwithincarbon-basednanoma-terials.Specifically,cat

27、alyticcentersbearingpositivechargeand/orhigherspindensityplayapivotalroleinmodifying the chemical adsorption of reactants andintermediates.Thefine-tunedelectronconfigurationscan enhance the compatibility between active sitesandadsorbedreactants,promotingtheadsorptionofreactionintermediatesandfacilit

28、atingelectrontrans-fer.Therefore,understanding these mechanisms iscrucialfortheprecisedesignofhighlyefficientCM-FCs.Inthissection,wedelveintotheoriginsofcata-lytic performance through experiments and densityfunctional theory(DFT)calculations,focusing ontwo-electronORRandWORforhydrogenperoxideproduct

29、ion,CO2RRandNRRforcarbon-andnitro-gen-basedchemicalsproduction.2.1 Two-electron oxygen reduction/water oxida-tion for H2O2Thecatalyticmechanismofmetal-freecatalysishasbeenproposedbasedonthediscoveryofN-dopedVA-CNTscatalyst.However,there is some contro-versyregardingthepotentialroleofmetalimpuritiesi

30、nORR.Toaddressthis,positivelychargedpolyelec-trolytes,exemplifiedbypoly(diallyldimethylammoni-umchloride)(PDDA),havebeenemployedtoverifythecharge-transfermechanismforORR58.Asares-ult,theORRperformanceofPDDA-modifiedCNTissignificantly enhanced,whereas the activity of theelectron-donated polyethylenei

31、mine functionalizedCNTelectrodeisinferiortothatofbareCNTelec-trode.ThisfindingrevealedthattheORRactivityinCMFCsisattributedtodoping-inducedchargeredis-tributionratherthanthepresenceofmetalimpurities.Subsequently,the active site is conclusively con-firmedusingasuiteofmodelN-dopingcarboncata-lysts,inc

32、luding pyridinic N-/graphitic N-/edges-/clean-highly oriented pyrolytic graphite(HOPG)59.X-rayphotoelectronspectroscopy(XPS)studiesofthepyridinic N-doped HOPG demonstrated that carbonatomsadjacenttopyridinicNcanreactwithOHspe-cies,leadingtoatransformationofthepyridinicNtopyridonicN(Fig.1b).Thisindic

33、atedthatthecarbonatoms adjacent to pyridinic N were the real activesites.Experiments combined with DFT highlightedthat pyridinic N-doping could significantly promotethechemisorptionofO2attheadjacentcarbonatomandthesubsequentprotonationprocess(Fig.1c).44新型炭材料(中英文)第39卷ConsideringtheORRreactionpathway,

34、anoxy-genmoleculeaccepts2electronsandcombineswith2protons to form a reaction intermediate(OOH*),whichcanbedirectlyreducedtoformH2O2(Fig.1c).Therefore,the two-electron ORR pathway has beenconsideredapromisingapproachforgreenH2O2pro-duction54.TheCMFCshavedemonstratedgreatpo-tentialintheelectrosynthesi

35、sofH2O2duetotheirhightunabilityandchemicalstability.Theactivityandse-lectivityofH2O2productionarestronglycorrelatedtoheteroatomic species,oxygen groups,and structuraldefects54.Heteroatom-dopedCMFCsgenerallycausearedistributionofchargedensityand/orspindensitydue to differences in electronegativity/sp

36、in densitybetweencarbonatomsandheteroatoms,therebyregu-lating the adsorption of reactants and intermediates(Fig.1d)60.Moreover,thedifferenceinheteroatomspeciesleadstoatunableactivityandselectivityto-wardORR.Forexample,amongvariousNspeciesinCMFCs,thepyrrolicNspecieshaveshownhighper-formancetowardtwo-

37、electronORRduetothesuit-ableadsorptionstrengthwith*OOHspecies61.ThepyrrolicNconfigurationhastheclosestadsorptionen-ergycomparedwiththeidealvalue,thusbeingcon-sidered a suitable species for electrochemical H2O2synthesis.In addition,two-electron ORR perform-anceisstronglylinearlycorrelatedtooxygencont

38、ent,asdemonstratedbyCuiandco-workers62.DFTcal-culationsdemonstratethatexcellentactivityandse-lectivityoriginatedfromtheCOOHandCOCfunctionalgroupsinCMFCs.Furthermore,thesyner-gisticeffectbetweenheteroatomanddefecthasalsobeenproveneffectivefortwo-electronORR.Mostre-cently,cooperationbetweenpentagondef

39、ectandN-doping can effectively regulate the geometric andelectronicpropertiesofthecarbonstructure,resultingin a high affinity for O2 and suitable strength of*OOHspecies63.Similarly,anO-modifieddefectiveCMFCexhibitshighactivityforH2O2electrosynthes-is.Comprehensive experiments and calculations re-vea

40、lthatthecombinationofdefectsandO-groupsisthekeytothetwo-electronpathwayofORR64.InadditiontoORR,WORinvolvingatwo-/four-electrontransferprocessisalsoacomplexyetcrucialreactionforbothwaterelectrolysisandH2O2electro-synthesis.Theoretical calculations suggest that N-doped CMFCs can significantly reduce t

41、he reactionenergyoftherate-limitingstep(fromO*toOOH*),demonstrating the optimal catalytic activity forWOR65.Forinstance,thepyridineN-oxidesitesin-duceenoughpositivechargeseparationthrough-delocalization,facilitatingtheinitialhydroxylionad-sorptionandenhancingtheWORprocess.Moreover,thechargeredistrib

42、utioncausedbypyridinicNalsocanoptimizethethermodynamicenergybarrierofthe*OOHintermediate.Asaresult,theas-preparedN-dopedCMFC exhibits the excellent WOR perform-ance,surpassingthecommercialRuO266.Accordingto the charge redistribution principle,O-/S-dopedCMFCswerealsosuccessfullysynthesizedtoreducethe

43、overpotentialorenergybarrierofWOR6769.The electrosynthesis of H2O2 through WOR isgainingincreasingattentionbecausewateristhesolerawreactantintheelectrochemicalprocess.However,owingtothesignificantlylowertheoreticalpotentialofoxygenevolutioncomparedtohydrogenperoxideformation(1.23Vvs.1.76V),theintrod

44、uctionofhet-eroatoms,defects,andfunctionalizationoftengener-atesahighactivityforthefour-electronOER.Inaddi-tion,the high oxidation potential of WOR to H2O2alsoleadstotheinevitableself-oxidationofCMFCsthemselvesduringthereaction,resultinginstructuralchanges and unclear identification of active sites.

45、Therefore,theCMFCsusedinH2O2electrosynthesismustpossess highly intrinsic stability,such as nan-odiamond,graphyne,andHOPG-basedmaterials7071.Consequently,thetwo-electronWORforH2O2pro-ductionbyCMFCsposesasignificantchallenge.Todate,thereareveryfewreportsonCMFCsfortwo-electron WOR to H2O2.Recent findin

46、gs show thatboron-doped diamond(BDD)nanomaterials exhibitimpressive activity for H2O2 production,with per-formance highly correlated to the doping level ofboronatoms70.Thisdiscoverypavesthewayfornewresearchinthedesignofsp3-structuredcarbonaceousmaterials for H2O2 electrosynthesis.Furthermore,第1期SHIL

47、eietal:Carbon-basedmetal-freenanomaterialsfortheelectrosynthesisofsmall-molecule45acetylene-basedCMFCshavealsoshowngreatpoten-tialforphoto/electrocatalytictwo-electronWORforH2O2 electrosynthesis.The acetylene species couldsignificantlypromotechargeseparationsandelectron-ic modulation,thereby facilit

48、ating the formation of*OOHintermediateforH2O2production71.2.2 Electrocatalytic CO2RR for chemicalsTheelectrocatalyticreductionofCO2toproducevaluablechemicalsandfuels,includingCO,HCOOH,CH4,C2H4,andCH3COOH,involvescomplexmulti-electron transfer pathways40.Carbon-based metal-freenanomaterialscandisrupt

49、thescalingrelationshipandmodulatetheadsorption/desorptionofintermedi-ates,demonstratingcomparableCO2RRperformancetotraditionalmetal-basedcatalysts.CO2isathermo-dynamicallystablemoleculewithinherentlylowelec-tron affinity.The dissociation energy of the CObond surpasses that of various other carbon-ba

50、sedchemical bonds.Consequently,the electrochemicalreductionofCO2demandsaconsiderableinputofen-ergy.The resulting products in CO2RRalways de-pendonthecatalystsandexperimentalparameters.Ingeneral,electrocatalyticCO2RRinvolves3steps:ini-tial CO2 adsorption onto the carbon-based electrodesurface,charge

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服