1、概率论与数理统计试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分)1、A,B为二事件,则A、 B、 C、 D、2、设A,B,C表示三个事件,则表示A、A,B,C中有一个发生 B、A,B,C中恰有两个发生C、A,B,C中不多于一个发生 D、A,B,C都不发生3、A、B为两事件,若,则成立A、 B、C、 D、4、设A,B为任二事件,则A、 B、C、 D、5、设事件A与B相互独立,则下列说法错误的是A、与独立 B、与独立C、 D、与一定互斥6、设离散型随机变量的分布列为X
2、012P0.30.50.2 其分布函数为,则A、0 B、0.3 C、0.8 D、17、设离散型随机变量的密度函数为 ,则常数A、 B、 C、4 D、58、设,密度函数,则的最大值是A、0 B、1 C、 D、9、设随机变量可取无穷多个值0,1,2,其概率分布为,则下式成立的是A、 B、 C、 D、10、设服从二项分布B(n,p),则有A、 B、C、 D、11、独立随机变量,若XN(1,4),YN(3,16),下式中不成立的是A、 B、 C、 D、X123p1/2c1/412、设随机变量的分布列为: 则常数c=A、0 B、1 C、 D、 13、设,又常数c满足,则c等于A、1 B、0 C、 D、-
3、114、已知,则=A、9 B、6 C、30 D、3615、当服从( )分布时,。A、指数 B、泊松 C、正态 D、均匀16、下列结论中,不是随机变量与不相关的充要条件。A、 B、C、 D、与相互独立17、设且,则有A、 B、 C、 D、18、设分别是二维随机变量的联合密度函数及边缘密度函数,则是与独立的充要条件。A、 B、C、与不相关 D、对有19、设是二维离散型随机变量,则与独立的充要条件是A、 B、 C、与不相关 D、对的任何可能取值 20、设的联合密度为,若为分布函数,则A、0 B、 C、 D、1二、计算题(本大题共6小题,每小题7分,共42分)1、 若事件 A与B相互独立, 。求:和
4、2、 设随机变量,且。求3、 已知连续型随机变量的分布函数为,求和。4、 设连续型随机变量的分布函数为求: (1)常数A和B;(2)落入(-1,1)的概率;(3)的密度函数5、某射手有3发子弹,射一次命中的概率为,如果命中了就停止射击,否则一直独立射到子弹用尽。求:(1)耗用子弹数的分布列;(2);(3)6、设的联合密度为,求:(1)边际密度函数;(2);(3)与是否独立三、解答题(本大题共2小题,每小题9分,共18分)1、 设,是来自正态总体的样本,下列 三个估计量是不是参数 的无偏估计量,若是无偏 估计量,试判断哪一个较优? ,。2、设 。为 的一组观察值,求的极大似然估计。概率论与数理统
5、计试卷答案及评分标准一、单项选择题(本大题共20小题,每小题2分,共40分)题号12345678910答案BDCDDDDCAD题号11121314151617181920答案CCBBBDCDDB二、计算题(本大题共6小题,每小题7分,共42分)1、 解:A与B相互独立(1分) (1分) (1分)又(1分) (2分) (1分)2、 解: (5分) (2分)3、解:由已知有 (3分)则: (2分) (2分)4、解:(1)由, 有: 解之有:, (3分)(2) (2分)(3) (2分)X123P2/32/91/95、解:(1) (3分)(2) (2分)(3) (2分)6、解:(1) 同理: (3分)
6、(2) 同理: (2分)(3) 与独立 (2分)三、应用题(本大题共2小题,每小题9分,共18分)1、 解: 同理:为参数 的无偏估计量(3分)又 同理:, 且 较优 (6分)2、 解:的似然函数为:(3分)解之有: (6分)一、(共30分,每题5分)1、设事件A与B相互独立,, 求.解:因为事件A与B相互独立,所以 =0.2 .2分 由,得 .2分 .1分2、三人独立地去破译一份密码,他们译出的概率分别为.求能将此密码译出的概率.解: .5分3、设随机变量的分布律为-10120.1250.250.250.375求的分布律,并计算. 1250.250.3750.375解: .3分 .2分4、设
7、随机变量服从参数为的泊松分布,且已知求.解:, .2分 .2分所以,得. .1分5、为检查某食用动物含某种重金属的水平,假设重金属的水平服从正态分布均未知,现抽取容量为25的一个样本,测得样本均值为186,样本标准差为10,求的置信度为0.95 的置信区间.解:总体均值 m 的置信度为0.95 的置信区间为 .2分即 .2分所求置信区间为(181.8722,190.1278) .1分6、某车间用一台包装机包装葡萄糖.包得的袋装糖重量当机器正常时,其均值公斤,标准差公斤.某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得平均重量为0.511公斤,问这天包装机工作是否正常?(取显著水
8、平)解:由题意设 .1分拒绝域为 .1分由于 , .2分即2.21.96,拒绝原假设,认为这天包装机工作不正常. .1分 概率论与数理统计B 班级 姓名 学号 第 2 页二、(共18分,每题6分)1、设随机变量和相互独立,概率密度分别为 求: (1)(2)(3).解:(1).2分(2) .2分(3)因为量和相互独立,所以. .2分2、已知随机变量,求: 与的协方差.解:.3分 .3分3、设是来自正态总体的一个样本,且已知随机变量服从自由度为2的分布,求的值.解:因为且相互独立,.所以, .2分,且相互独立. .2分 由分布的定义,得 , 所以,. .2分三、(共18分,每题6分)1、设总体现随
9、机抽取容量为36的一个样本,求样本均值落入(50.8,53.8)之间的概率.解:, .2分 = = .3分 .1分2、设随机变量的分布函数为 求:(1)A , B的值;(2). 解:(1)由连续型随机变量分布函数的连续性,得, 即 解得 .3分 (2) .3分 概率论与数理统计B试题 班级 姓名 学号 第 3 页3、箱子中有一号袋1个,二号袋2个.一号袋中装1个红球,2个黄球,二号袋中装2个红球,1个黄球,今从箱子中任取一袋,从中任取一球,结果为红球,求这个红球是从一号袋中取得的概率.解:设=从箱子中取到i号袋,B=抽出的是红球 .2分 .1分 .3分四、(8分) 设随机变量具有密度函数 求(
10、1)常数A;(2)X的分布函数.(1)因为 .2分所以 得 .2分 (2) = .4分五、(8分)某箱装有100件产品,其中一、二、三等品分别为60、30、10件,现从中随机抽取一件,记求的联合分布律.解:设分别表示抽到一、二、三等品,的联合分布律为 X2X10 1 010.1 0.30.6 0.0.8分(每个2分)六、(10分)设随机变量和的联合概率密度为 (1) 求边缘概率密度;(2)判断随机变量和是否独立.解:(1) .1分 .2分 .1分 .2分(2) 因为,所以随机变量和不独立. .4分 七、(8分)设是总体的一个样本,为一相对应的样本观测值,总体的概率密度为 求参数的矩估计和极大似
11、然估计.解:(1)矩估计 , .2分由得 .2分(2)似然函数对数似然函数 .2分令,得 参数的极大似然估计量为 .2分 数理统计练习一、填空题 1、设A、B为随机事件,且P(A)=0.5,P(B)=0.6,P(B|A)=0.8,则P(A+B)=_ 0.7 _。2、某射手对目标独立射击四次,至少命中一次的概率为,则此射手的命中率。3、设随机变量X服从0,2上均匀分布,则 1/3 。4、设随机变量服从参数为的泊松(Poisson)分布,且已知1,则_1_。 5、一次试验的成功率为,进行100次独立重复试验,当1/2_时 ,成功次数的方差的值最大,最大值为 25 。6、(X,Y)服从二维正态分布,
12、则X的边缘分布为 。7、已知随机向量(X,Y)的联合密度函数,则E(X)=。 8、随机变量X的数学期望,方差,k、b为常数,则有= ;=。 9、若随机变量X N (2,4),Y N (3,9),且X与Y相互独立。设Z2XY5,则Z N(-2, 25) 。10、的两个 无偏 估计量,若,则称比有效。1、设A、B为随机事件,且P(A)=0.4, P(B)=0.3, P(AB)=0.6,则P()=_0.3_。2、设XB(2,p),YB(3,p),且PX 1=,则PY 1=。3、设随机变量X服从参数为2的泊松分布,且Y =3X -2, 则E(Y)=4。4、设随机变量X服从0,2上的均匀分布,Y=2X+
13、1,则D(Y)= 4/3 。5、设随机变量X的概率密度是:,且,则=0.6 。6、利用正态分布的结论,有 1 。7、已知随机向量(X,Y)的联合密度函数,则E(Y)= 3/4 。8、设(X,Y)为二维随机向量,D(X)、D(Y)均不为零。若有常数a0与b使,则X与Y的相关系数-1 。9、若随机变量X N (1,4),Y N (2,9),且X与Y相互独立。设ZXY3,则Z N (2, 13) 。10、设随机变量XN (1/2,2),以Y表示对X的三次独立重复观察中“”出现的次数,则= 3/8 。1、设A,B为随机事件,且P(A)=0.7,P(AB)=0.3,则0.6 。2、四个人独立地破译一份密
14、码,已知各人能译出的概率分别为,则密码能被译出的概率是 11/24 。5、设随机变量X服从参数为的泊松分布,且,则= 6 。6、设随机变量X N (1, 4),已知(0.5)=0.6915,(1.5)=0.9332,则 0.6247 。7、随机变量X的概率密度函数,则E(X)= 1 。8、已知总体X N (0, 1),设X1,X2,Xn是来自总体X的简单随机样本,则。9、设T服从自由度为n的t分布,若,则。10、已知随机向量(X,Y)的联合密度函数,则E(X)= 4/3 。 1、设A,B为随机事件,且P(A)=0.6, P(AB)= P(), 则P(B)= 0.4 。2、设随机变量X与Y相互独
15、立,且,则P(X =Y)=_ 0.5_。3、设随机变量X服从以n, p为参数的二项分布,且EX=15,DX=10,则n= 45 。4、设随机变量,其密度函数,则= 2 。5、设随机变量X的数学期望EX和方差DX0都存在,令,则DY= 1 。6、设随机变量X服从区间0,5上的均匀分布,Y服从的指数分布,且X,Y相互独立,则(X, Y)的联合密度函数f (x, y)= 。7、随机变量X与Y相互独立,且D(X)=4,D(Y)=2,则D(3X 2Y ) 44。8、设是来自总体X N (0, 1)的简单随机样本,则服从的分布为。9、三个人独立地向某一目标进行射击,已知各人能击中的概率分别为,则目标能被击
16、中的概率是3/5 。10、已知随机向量(X, Y)的联合概率密度,则EY = 1/2 。1、设A,B为两个随机事件,且P(A)=0.7, P(A-B)=0.3,则P()=_0.6 _。2、设随机变量X的分布律为,且X与Y独立同分布,则随机变量Z maxX,Y 的分布律为。3、设随机变量X N (2,),且P2 X 40.3,则PX 00.2 。4、设随机变量X 服从泊松分布,则=。5、已知随机变量的概率密度为,令,则的概率密度为。 6、设X是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则 2.4 。7、X1,X2,Xn是取自总体的样本,则。8、已知随机向量(X, Y)的联合概率
17、密度,则EX = 2/3 。9、称统计量的 无偏 估计量,如果=。10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 小概率事件原理。1、设A、B为两个随机事件,若P(A)=0.4,P(B)=0.3,则 0.3 。2、设X是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则 18.4 。3、设随机变量XN (1/4,9),以Y表示对X的5次独立重复观察中“”出现的次数,则= 5/16 。4、已知随机变量X服从参数为的泊松分布,且P(X=2)=P(X=4),则=。5、称统计量的无偏估计量,如果= 。6、设,且X,Y相互独立,则 t(n) 。7、若随机变量XN (3,9)
18、,YN (1,5),且X与Y相互独立。设ZX2Y2,则Z N (7,29) 。8、已知随机向量(X, Y)的联合概率密度,则EY = 1/3 。9、已知总体是来自总体X的样本,要检验,则采用的统计量是。10、设随机变量T服从自由度为n的t分布,若,则。1、设A、B为两个随机事件,P(A)=0.4, P(B)=0.5,则 0.55 。2、设随机变量X B (5, 0.1),则D (12X ) 1.8 。3、在三次独立重复射击中,若至少有一次击中目标的概率为,则每次射击击中目标的概率为 1/4 。 4、设随机变量的概率分布为,则的期望EX= 2.3。5、将一枚硬币重复掷n次,以X和Y分别表示正面向
19、上和反面向上的次数,则X和Y的相关系数等于1。6、设(X, Y)的联合概率分布列为 YX 10421/91/32/911/18ab 若X、Y相互独立,则a = 1/6 ,b = 1/9 。7、设随机变量X服从1,5上的均匀分布,则 1/2 。8、三个人独立地破译一份密码,已知各人能译出的概率分别为,则密码能被译出的概率是3/5 。 9、若是来自总体X的样本,分别为样本均值和样本方差,则 t (n-1) 。10、的两个无偏估计量,若,则称比 有效 。1、已知P (A)=0.8,P (AB)=0.5,且A与B独立,则P (B) 3/8 。2、设随机变量XN(1,4),且P X a = P X a
20、,则a 1 。 3、随机变量X与Y相互独立且同分布,则。4、已知随机向量(X, Y)的联合分布密度,则EY= 2/3 。 5、设随机变量XN (1,4),则 0.3753 。(已知F(0.5)=0.6915,F(1.5)=0.9332)6、若随机变量XN (0,4),YN (1,5),且X与Y相互独立。设ZXY3,则Z N (4,9) 。7、设总体XN(1,9),是来自总体X的简单随机样本,分别为样本均值与样本方差,则;。8、设随机变量X服从参数为的泊松分布,且,则= 6 。9、袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为 4/7 。 10、在假设检验中,
21、把符合H0的总体判为不合格H0加以拒绝,这类错误称为 一错误;把不符合H0的总体当作符合H0而接受。这类错误称为 二 错误。1、设A、B为两个随机事件,P(A)=0.8,P(AB)=0.4,则P(AB)= 0.4 。2、设X是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则 2.4 。3、设随机变量X的概率分布为X1012P0.10.30.20.4则= 0.7 。 4、设随机变量X的概率密度函数,则=。5、袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P X10 0.39*0.7 。6、某人投篮,每次命中率为0.7,现独立投篮
22、5次,恰好命中4次的概率是。7、设随机变量X的密度函数,且,则c = -2 。8、已知随机变量U = 49X,V= 83Y,且X与Y的相关系数1,则U与V的相关系数1。 9、设,且X,Y相互独立,则t (n) 10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 小概率事件原理 。1、随机事件A与B独立, 0.4 。2、设随机变量X的概率分布为则X2的概率分布为3、设随机变量X服从2,6上的均匀分布,则 0.25 。4、设X表示10次独立重复射击命中目标的次数,且每次命中率为0.4,则=_18.4_。 5、随机变量,则 N(0,1) 。 6、四名射手独立地向一目标进行射击,已知各人
23、能击中目标的概率分别为1/2、3/4、2/3、3/5,则目标能被击中的概率是 59/60 。 7、一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是,则袋中白球的个数是 4 。8、已知随机变量U = 12X,V= 23Y,且X与Y的相关系数 1,则U与V的相关系数 1 。9、设随机变量XN (2,9),且P X a = P X a ,则a 2 。 10、称统计量的无偏估计量,如果= 二、选择题1、设随机事件与互不相容,且,则( D )。. B. . 2、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( A )。A. B. C. D. 、已知随机变量的概率
24、密度为,令,则的概率密度为( D )。A. B. C. D. 、设随机变量,满足,是的分布函数,则对任意实数有(B )。A. B. C. D. 、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D、设,为随机事件,则必有( A )。A. B. C. D. 、某人连续向一目标射击,每次命中目标的概率为,他连续射击直到命中为止,则射击次数为3的概率是( C )。A. B. C. D. 3、设是来自总体的一个简单随机样本,则最有效的无偏估计是( A )。A. B. C. D. 4、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数
25、近似于( B )。A. B C D5、设为总体的一个样本,为样本均值,则下列结论中正确的是( D )。 A. ; B. ; C. ; D. ;、已知A、B、C为三个随机事件,则A、B、C不都发生的事件为(A)。A. B. C.A+B+C D. ABC、下列各函数中是随机变量分布函数的为( B )。A. B. C. D. 3、是二维随机向量,与不等价的是( D )A. B. C. D. 和相互独立4、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D5、设总体,其中未知,为来自总体的样本,样本均值为,样本方差为, 则下列各式中不是统计量的是(
26、C )。A. B. C. D. 1、若随机事件与相互独立,则( B )。A. B. C. D. 2、设总体X的数学期望EX,方差DX2,X1,X2,X3,X4是来自总体X的简单随机样本,则下列的估计量中最有效的是( D )3、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D4、设离散型随机变量的概率分布为,则( B )。A. 1.8 B. 2 C. 2.2 D. 2.45、在假设检验中, 下列说法错误的是( C )。A. 真时拒绝称为犯第二类错误。 B. 不真时接受称为犯第一类错误。C. 设,则变大时变小。D. 、的意义同(C),当样本容量
27、一定时,变大时则变小。1、若A与B对立事件,则下列错误的为( A )。A. B. C. D. 2、下列事件运算关系正确的是( A )。A. B. C. D. 3、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D4、若,则(D )。 A. 和相互独立 B. 与不相关 C. D. 5、若随机向量()服从二维正态分布,则一定相互独立; 若,则一定相互独立;和都服从一维正态分布;若相互独立,则Cov (X, Y ) =0。几种说法中正确的是( B )。A. B. C. D. 1、设随机事件A、B互不相容,则( C )。A. B. C. D.2、设A
28、,B是两个随机事件,则下列等式中( C )是不正确的。A. ,其中A,B相互独立B. ,其中C. ,其中A,B互不相容D. ,其中3、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D4、设随机变量X的密度函数为f (x),则Y = 5 2X的密度函数为( B )5、设是一组样本观测值,则其标准差是(B )。A. B. C. D. 1、若A、B相互独立,则下列式子成立的为( A )。A. B. C. D. 2、若随机事件的概率分别为,则与一定(D)。A. 相互对立 B. 相互独立 C. 互不相容 D.相容3、设为标准正态分布函数,且,相互独立
29、。令,则由中心极限定理知的分布函数近似于(B )。A. B C D4、设随机变量X N(,81),Y N(,16),记,则( B )。A. p1p2 D. p1与p2的关系无法确定5、设随机变量X的密度函数为f (x),则Y = 7 5X的密度函数为( B ) 1、对任意两个事件和, 若, 则( D )。A. B. C. D. 2、设、为两个随机事件,且, , 则必有( B )。A. B. C. D. 、互不相容3、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D4、已知随机变量和相互独立,且它们分别在区间1,3和2,4上服从均匀分布,则(
30、 A )。A. 3 B. 6 C. 10 D. 12 5、设随机变量X N(,9),Y N(,25),记,则( B )。A. p1p2 D. p1与p2的关系无法确定1、设两个随机事件相互独立,当同时发生时,必有发生,则( A )。A. B. C. D. 2、已知随机变量的概率密度为,令,则Y的概率密度为( A )。A. B. C. D. 3、两个独立随机变量,则下列不成立的是( C )。A. B. C. D. 4、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数近似于( B )。A. B C D5、设总体X的数学期望EX,方差DX2,X1,X2,X3是来自总体X的简单随机
31、样本,则下列的估计量中最有效的是( B )1、若事件两两独立,则下列结论成立的是( B )。A. 相互独立B. 两两独立C. D. 相互独立2、连续型随机变量X的密度函数f (x)必满足条件( C )。3、设是任意两个互相独立的连续型随机变量,它们的概率密度分别为和,分布函数分别为和,则( B )。A. 必为密度函数 B. 必为分布函数C. 必为分布函数 D. 必为密度函数4、设随机变量X, Y相互独立,且均服从0,1上的均匀分布,则服从均匀分布的是( B )。A. X Y B. (X, Y)C. X Y D. X + Y5、设为标准正态分布函数,且,相互独立。令,则由中心极限定理知的分布函数
32、近似于( B )。A. B C D 三(5)、市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的两倍,第二、第三厂家相等,且第一、第二、第三厂家的次品率依次为2,2,4。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率为多少? 解 设表示产品由第i家厂家提供,i=1, 2, 3;B表示此产品为次品。 则所求事件的概率为 答:该件商品是第一产家生产的概率为0.4。三(6)、甲、乙、丙三车间加工同一产品,加工量分别占总量的25%、35%、40%,次品率分别为0.03、0.02、0.01。现从所有的产品中抽取一个产品,试求(1)该产品是次品的概率;(2)若检查结果显
33、示该产品是次品,则该产品是乙车间生产的概率是多少? 解:设,表示甲乙丙三车间加工的产品,B表示此产品是次品。 (1)所求事件的概率为 (2) 答:这件产品是次品的 概率为0.0185,若此件产品是次品,则该产品是乙车间生产的概率为0.38。三(7)、一个机床有1/3的时间加工零件A,其余时间加工零件B。加工零件A时停机的概率是0.3,加工零件A时停机的概率是0.4。求(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A时发 生停机的概率。 解:设,表示机床在加工零件A或B,D表示机床停机。 (1)机床停机夫的概率为 (2)机床停机时正加工零件A的概率为三(8)、甲、乙、丙三台机床加
34、工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94,90,95。现从加工好的整批零件中随机抽查一个,发现是废品,判断它是由甲机床加工的概率。 解 设,表示由甲乙丙三机床加工,B表示此产品为废品。(2分)则所求事件的概率为 答:此废品是甲机床加工概率为3/7。 三(9)、某人外出可以乘坐飞机、火车、轮船、汽车四种交通工具,其概率分别为5、15、30、50,乘坐这几种交通工具能如期到达的概率依次为100、70、60、90。已知该人误期到达,求他是乘坐火车的概率。 (10分)解:设,分别表示乘坐飞机、火车、轮船、汽车四种交通工具,B表示误期到达。 则 答:此人乘坐火车的概率为0.209。 三(10)、某
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100