ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:304KB ,
资源ID:3021299      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3021299.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(哈尔滨市高三数学二轮复习专题能力提升训练五计数原理.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

哈尔滨市高三数学二轮复习专题能力提升训练五计数原理.doc

1、哈尔滨2013届高三数学二轮复习专题能力提升训练:计数原理本试卷分第卷(选择题)和第卷(非选择题)两部分满分150分考试时间120分钟第卷(选择题共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1设的展开式的各项系数之和为M, 二项式系数之和为N,若M-N240, 则展开式中x3的系数为( )A-150B150C-500D500【答案】B2在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。那么,在上述3名选手之间比赛的场数是( )A0 B1 C2 D3【答

2、案】B3正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A20B15C12D10【答案】D4有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A10B48C60D80【答案】D525人排成55方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选法为( )A60种B100种C300种D600种【答案】D6的展开式中的常数项为( )A-60B-50C50D60【答案

3、】D7展开式中的中间项是( )A B C D【答案】C8某班选派6人参加两项公益活动,每项活动最多安排4人,则不同的安排方法有( )A50种B70种C35种D55种【答案】A9有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,则不同的站法共有( )A66种B60种C36种D24种【答案】C10有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有( )A24种B48种C96种D120种【答案】B11在二项式n的展开式中,各项系数之和为4,各项二项式系数之和为B,且AB72,则展开式中常数项的值为( )A6B9C12D18【答案】B12

4、展开式中含项的系数为( )ABCD【答案】A第卷(非选择题共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13若(2x+)4=a0+a1x+a2x2+a3x3+a4x4, 则(a0+a2+a4)2(a1+a3)2 的值为_【答案】114若一个整数是4的倍数或这个整数中含有数字4,我们则称这个数是“含4数”,例如20、34,将0,50中所有“含4数”取出组成一个集合,则这个集合中的所有元素之和为 。【答案】67315= 。【答案】16上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有 种不同的排法【答案】12

5、三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17已知(1)求展开式中各项系数和;(2)二项式系数最大的项.(3)求展开式中含的项;(4)求展开式中系数最大的项【答案】(1)取得各项系数和为=1(2) 由知第5项二项式系数最大,此时(3)由通项公式令.故展开式中含的项为(3)设展开式中第的系数的绝对值最大.则解得且 所以又的系数为负,所以系数最大的项为18已知的展开式中x的系数为19,求的展开式中的系数的最小值【答案】由题意,项的系数为,根据二次函数知识,当或10时,上式有最小值,也就是当,或,时,项的系数取得最小值,最小值为8119给定平面上的点集P=P1

6、,P2,P1994, P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G)(1)求m(G)的最小值m0(2)设G*是使m(G*)=m0的一个图案,若G*中的线段(指以P的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形【答案】设G中分成的83个子集的元素个数分别为ni(1i83),ni=1994且3n1n2

7、n83则m(G)= C即求此式的最小值设nk+1nk+1即nk+11nk+1则C+ C( C+ C)= CC0这就是说,当nk+1与nk的差大于1时,可用nk+11及nk+1代替nk+1及nk,而其余的数不变此时,m(G)的值变小于是可知,只有当各ni的值相差不超过1时,m(G)才能取得最小值1994=8324+2故当81组中有24个点,2组中有25个点时,m(G)达到最小值m0=81C+2C=812024+22300=168544 取5个点为一小组,按图1染成a、b二色这样的五个小组,如图2,每个小圆表示一个五点小组同组间染色如图1,不同组的点间的连线按图2染成c、d两色这25个点为一组,共

8、得83组染色法相同其中81组去掉1个点及与此点相连的所有线即得一种满足要求的染色20已知二项式(nN)的展开式中第5项的系数与第3项的系数的比是56:3 .(1)求的值;(2)求展开式中的常数项【答案】(1) (2)18021已知,(1)若,求的展开式中的系数;(2)证明: ,() 【答案】(1)由已知得的展开式中的系数为=76 (2)由(1)知应当为函数展开式中的系数又 两式相减得所以 所以展开式中的系数等于展开式中的系数因为此系数为所以,()22已知圆的方程,从0, 3,4,5,6,7,8,9,10这九个数中选出3个不同的数,分别作圆心的横坐标、纵坐标和圆的半径。问:(1)可以作多少个不同的圆?(2)经过原点的圆有多少个?(3)圆心在直线上的圆有多少个?【答案】(1)可分两步完成:第一步,先选r有中选法,第二步再选a,b有中选法 所以由分步计数原理可得有.=448个不同的圆 (2)圆经过原点满足 所以符合题意的圆有 8分(3)圆心在直线上,所以圆心有三组:0,10;3,7;4,6。所以满足题意的圆共有个4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服