ImageVerifierCode 换一换
格式:DOC , 页数:36 ,大小:3MB ,
资源ID:3013873      下载积分:4 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3013873.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(铌酸锂晶体的横向电光效应V0.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

铌酸锂晶体的横向电光效应V0.doc

1、 . 铌酸锂晶体的横向电光效应研究1实验要求1 研究内容1.1 熟悉沿光轴条件下铌酸锂晶体的横向电光效应。1.2 研究近轴条件下铌酸锂晶体的横向电光效应,对铌酸锂晶体的电光效应进行理论推导,分析降低晶体驱动电压的方法。1.3 研究非近轴条件下铌酸锂晶体的横向电光效应,分析入射角对晶体电光效应的影响,进行数值仿真。2 成果形式2.1 采用理论分析与数值仿真结合的方式,研究结果以图表的形式给出。2.2 完成课题研究报告。2背景介绍铌酸锂( LINBO3) 晶体作为一种优良的横向电光调制材料,具有驱动电压低、插入损耗小、光谱工作范围宽、消光比高和易于大规模生产等优点,在光通信、光信号传输、电光开关等

2、领域得到了广泛的应用。理想情况下光线沿着铌酸锂晶体的光轴方向传播,并且在理论分析时不考虑自然双折射的影响,但是,实际应用中光线与光轴完全校准是不可能实现的,这就会造成理论与实际之间存在误差。分析铌酸锂晶体在近轴及非近轴情况下的横向电光效应,对于利用角度调节以改善其电光性能具有指导意义。同时,近轴及非近轴条件下晶体的电光特性对既需要利用晶体双折射效应进行分束或者合束,又需要利用其电光效应产生附加相移的新型电光器件来说是至关重要的。3基础知识研究铌酸锂晶体的横向电光效应,涉及到光的偏振、双折射及晶体的电光效应等较为基础的知识,为了更加深入地理解电光效应,更加透彻地分析不沿光轴条件下铌酸锂晶体的横向

3、电光效应,对该问题所涉及一系列基础知识进行复习整理,如下所示。1 光的偏振1.1 电磁波是横波,具有偏振现象,这是许多的光学现象的重要基础,包括电光效应。1.2 对人眼、照相底片及光电探测器起作用的是电磁波中的电场强度E,因此常把电矢量E称为光矢量,把E的振动称为光振动。在讨论光振动的性质时,只需要考虑电矢量E即可。1.3 完全偏振光包括线偏振光、圆偏振光和椭圆偏振光,可用如下模型描述(图中给出了线偏振光的例子,线偏振光的例子里x、y方向的振动无相位差):1.4 马吕斯定律:一束线偏振光与偏振片透光轴夹角为,这束偏振光透过偏振片后的振幅及光强与夹角之间的数学关系为2 双折射2.1 基本概念当光

4、线从空气进入某些晶体时,这些晶体会使一条单色的入射光线分成两条折射光线,这种现象称为双折射。这两条折射光中,一条光的折射行为遵循折射定律,称为寻常光或o光,而另一条并不遵守,称为e光。当入射光进入晶体内沿某一特殊方向行进时,两条光线完全重合而不出现双折射现象,晶体内的这一特殊方向称为晶体的光轴。光线与光轴决定的平面称为主平面。o光的电场振动方向垂直于主平面,e光的电场振动方向在主平面内,二者都是直线偏振光。当光线沿着某一特殊平面入射时,不论入射角是多少,e光主平面与o光主平面总是完全重合的,这一特殊平面称为晶体的主截面。2.2 原理分析首先引入惠更斯-菲涅耳原理:行进中的波阵面上任一点都可看作

5、是新的次波源,而从波阵面上各点发出的许多次波所形成的包络面,就是原波面在一定时间内所传播到的新波面。利用惠更斯-菲涅耳原理可以有效地理解下面所用的确定晶体中o光及e光方向的方法。单轴晶体中,o光沿各个方向的传播速度相同,e光沿各个方向的传播速度不同,但沿光轴方向的传播速度与o光一样。单轴晶体可以分为两类:一类以冰洲石为代表,e光的波面是扁椭球,称为负晶体;另一类以石英为代表,e光的波面是长椭球,称为正晶体。可以利用惠更斯原理作图确定折射光线的传播方向:3 电光效应3.1 在外界强电场的作用下,某些本来是各项同性的介质会产生双折射现象,而本来有双折射性质的晶体,它的双折射性质也会发生变化,即为电

6、光效应。3.2 克尔效应3.2.1 实验装置两个正交的偏振片中间放置一个玻璃盒(称为克尔盒),盒内装有特殊液体并封有一对平行板电极,两偏振片的透光轴与外加电场成45。3.2.2 公式推导外加电场之后,盒内液体变成各向异性介质,类似于单轴晶体,光轴方向即电场方向。线偏振光通过盒内液体时,分解为垂直于电场振动的o光和沿着电场振动的e光。这两个方向上的折射率不同,因而通过克尔盒之后会产生位相差:透射光的相对强度(注意到偏振片的透光轴与外加电场成45):此处只考虑出射光的相对相位差,利用和差化积公式:由此可以推出:3.2.3 特点3.2.3.1 折射率与所加电场的平方成正比。3.2.3.2 相差的变化

7、与电场的方向无关。3.2.3.3 弛豫时间短,可以用于制作高速光开关。3.3 普克尔效应3.3.1 纵向电光效应3.3.1.1 实验装置正交的偏振器P、A之间放有一块KDP单轴晶体,z轴为光轴。晶体的两个端面垂直于光轴,且与偏振器平行。未加电场时,从P出来的线偏振光沿着光轴方向传播,没有双折射现象。若沿z轴方向加电场,此时自检偏振器有光输出。此时,z轴不再是光轴,KDP晶体变成了双轴晶体,在晶体端面正方形的对角线方向上感生出两个互相正交的主振动方向。从偏振器P出来的线偏振光进入晶体后分解为沿轴和轴振动的等振幅的两束线偏振光,感生折射率分别为、。3.3.1.2 公式推导感生折射率差为:是KDP晶

8、体的o光折射率,是纵向电光系数,E为所加电场强度,、分别是主振动方向、上的主折射率。因此通过晶体后的相位差为:从检偏器射出的相对透射光强为:3.3.1.3 特点透射光强与晶体的长度无关,仅由晶体的性质和所加电场U决定。把相对透射光强随外加电压的变化关系用I/I0U曲线表示,称此曲线为晶体的透射率曲线。【注】半波电压:使位相差为所需的驱动电压。3.3.2 横向电光效应3.3.2.1 实验装置当外加电场的方向与光的传播方向垂直时,此时的电光效应称为横向电光效应,如下图所示(该图模型仅对应于此处文字描述,与后续的理论分析、实验仿真所用的图略有出入)。z轴为光轴,为光传播方向,电场加在z方向上,两个主

9、振动方向为z和,感生折射率分别为、。3.3.2.2 公式推导经过晶体后的位相差:相对透射光强类似,不再赘述。3.3.2.3 特点位相差正比于l/h,将晶体做成扁平形可以大大降低所需的半波电压。4 相对透射光强的进一步推导实验装置中,两偏振器互相正交,晶体的两个主轴也互相正交;加电压后,假定入射端的线偏振光与晶体的某一主轴夹角为,据此推导透射光强的表达式:入射线偏振光:沿着铌酸锂晶体的两个主轴分解:经过铌酸锂晶体后,产生位相差:从尾端的偏振器射出:整理化简得到出射光表达式:在3.2.2部分,曾处理过括号内的部分,使用三角函数的和差化积公式易得:因此相对透射光强为:旋转晶体使得=45,可以得到最大

10、相对透射光强为:为了简便,之后的分时析中默认调整=45以使相对透射光强达到最大。5 铌酸锂晶体5.1 折射率色散公式(Sellmeier方程):利用该公式,可以根据波长参数直接确定铌酸锂晶体在未加电场时的两个主折射率。5.2 单轴晶体中折射率的基本描述工具没有外加电场时的折射率椭球:加电场之后,一般情况下椭球的主轴会发生旋转,此时的椭球方程为:对于线性电光效应,椭球系数相对于未加电场时的增量满足下式(为电光系数,是晶体的一种属性):5.3 铌酸锂晶体中的线性电光效应铌酸锂晶体的电光系数():电光系数的值为:将铌酸锂晶体的电光系数代入椭球方程:晶体的折射率椭球变化为以下形式:以该折射率椭球方程为

11、基础,可以较为透彻地研究近轴情况下铌酸锂晶体的电光效应;辅助以较为繁琐的计算及数值仿真则可以进一步研究非近轴情况下铌酸锂晶体的横向电光效应。4理论分析1 沿光轴条件下铌酸锂晶体的横向电光效应1.1 沿z轴传播,y向加电场根据铌酸锂晶体线性电光效应的理论,此时晶体的折射率椭球变为:进行坐标变换(y、z坐标轴顺时针旋转):坐标变换之后的系数如下:令交叉项系数为0,可得:由于项相对于折射率所在项很小,可以略去这一项以化简计算:将上述未经过化简的式子代入的系数中:代入的系数中:因此,折射率椭球方程变化为:各主轴的折射率变为:利用泰勒级数展开至1阶,忽略高阶项可得:应用到上述的感生折射率上:由此可得折射

12、率之差为:由于角度较小,可以忽略最后一项,得到:1.2 沿z轴传播,x向加电场此时折射率椭球变为:由于存在xz、xy交叉项,说明椭球分别绕y轴、z轴旋转一定角度。先从绕y轴的旋转考察,设绕y轴逆时旋转了角度:经过上述坐标变换之后椭球方程的系数发生变化,列表整理如下:令交叉项前的系数为0,可得:由于很小,可知也很小,可以忽略绕y轴的旋转,即可以忽略xz交叉项,只考虑椭球方程中的其余项。接下来研究xy交叉项,设新的椭球(即忽略了xz交叉项后的椭球)绕z轴旋转角度为,据此进行坐标变换:坐标变换后,整理各项系数如下表:令交叉项为0可得:,可得新的椭球方程为:利用泰勒级数展开,与之前的步骤类似,可得感生

13、折射率为:感生折射率之差为:1.3 z轴加电场仅在z轴加电场时,易知折射率椭球表达式将变为:由于不存在交叉项,可见z轴加电场时椭球并不旋转。利用泰勒级数展开,可得感生折射率为:z轴方向加电压,光线的传播方向为x或y,则横向电光效应的折射率差为:2 近轴条件下铌酸锂晶体的横向电光效应2.1 理论分析的核心思想铌酸锂晶体的近光轴电光效应是指在晶体x-y平面内加电场,光沿偏离光轴一个小角度的方向传播时折射率随电场变化的效应,这一变化可以借用折射率椭球来描述。沿光轴时,将椭球的表达式主轴化即可得到3个新的主轴方向上的感生折射率;而在近轴情况下,只需求出垂直入射光的截面与椭球交出的椭圆的长轴与短轴即为感

14、生折射率。最后,再利用近轴条件进行近似就可以得到最终结果。2.2 具体理论推导2.2.1 感生折射率及位相差如图所示,z轴为光轴,光线沿k(,)方向入射沿y方向加电场时,折射率椭球表达式为(从非近轴条件下的推导中可以看出,x轴方向加电场的唯一区别是绕z轴旋转45,规律上没有本质区别,对于分析降低驱动电压的方法影响不大,此处不再对该情境进行分析):进行坐标变换,使k矢量所指方向称为新坐标系中的z轴: 先绕z轴旋转角度 再绕轴旋转角度 求出平面上的椭圆表达式即将代入,并令,即可得到所需表达式:化简得各项系数,整理得到下表(原椭圆表达式中yz交叉项引入的系数放在圆括号内):根据本块1.1的推导,很小

15、,因此cossin,可以忽略原yz交叉项引入的系数以简化运算: 将椭圆主轴化得到主折射率将坐标系绕轴逆时针旋转角度:将坐标变换应用到上面的系数表所代表的椭圆表达式中,得到新的表达式,再次将系数整理为表格:令交叉项为0,可得:容易知道感应折射率为:此时根据近轴条件,即很小,则:sin=, cos=1可以得到如下近似,其中是与光轴垂直的主轴旋转的角度,即偏振光振动方向转动的角度:折射率之差为:将偏振光振动方向偏角公式代入到感生折射率中因此感生折射率可以进一步化简此时利用近轴条件求出偏振方向偏转角:因此感生折射率可以进一步近似为:则感生折射率之差为:因此位相差为:简单化简可得:2.2.2 降低晶体驱

16、动电压的方法:假定沿y轴方向加电场,y轴方向晶体厚度为dy。从位相差着手分析,要实现降低驱动电压的目标,即需要实现以下目标:改变其余参数弥补驱动电压的降低,以保证位相差不变,从而入射光的相对透光率等参数也不变。将电场强度换位驱动电压:为了看清楚Uy与其他参数的关系,将平方项拆开再次化简:易知增加驱动电压,位相差会单调增大。再从上述公式入手,容易得到降低晶体驱动电压Uy的几种方法: 减小沿电场方向的晶体厚度 加长主轴方向的晶体长度 提高所使用激光的频率,即减小其波长 当入射角一定时,令靠近90或270附近可以降低驱动电压 当入射角一定时n 若较大,则增大可以降低驱动电压n 若较小,则驱动电压与入

17、射角之间的关系较为复杂。通过分析折射率之差的根号内部的部分可知,该部分与sin的平方为开口朝上的抛物线关系,且抛物线的对称轴位于正半轴。根据近轴条件,此时的增大会使位相差减小,因此减小可以降低驱动电压。3 非近轴条件下铌酸锂晶体的横向电光效应3.1 非近轴条件下理论分析的核心思想非近轴情况的分析以沿光轴条件下的横向电光效应为基础,再加上简单的数学变换和稍复杂的计算即可得到结果,与近轴情况下的分析类似,但是不能利用近轴条件进行近似,因而计算更加麻烦。与近轴时的想法一致,y方向加电场后,光在晶体中传播的折射率椭球就已经固定了。要分析光在晶体中传播的位相差,只需求出与传播方向垂直的截面上的椭圆表达式

18、,再通过标准化该表达式求得长短轴长度,即为两个正交主轴的折射率。3.2 沿y方向加电场如图所示,z轴为光轴,光线沿k(,)方向入射。根据近轴部分推导的前半部分(还未进行近轴近似)可直接得到偏振方向的转角及感生折射率:这就是铌酸锂晶体沿y方向加电场,光沿任意方向传播时,感应折射率的函数表达式,据此可以分析感应折射率与入射角度的关系。3.3 沿x方向加电场沿x方向加电场时,折射率椭球表达式为:由理论分析1.2可知,y方向加电场相当于使折射率椭球绕z轴旋转45,旋转之后的椭球表达式变为:而沿y轴方向加电场时椭球的函数表达式为:根据3.2的分析可知交叉项可以忽略,即沿y轴方向加电场时椭球的函数表达式为

19、:对比发现,该表达式与x方向加电场时绕z轴旋转45后的表达式一致,可利用这一点简化推导过程:令,在旋转之后的坐标系里,可以直接运用3.2的结论:这就是铌酸锂晶体沿x方向加电场,光沿任意方向传播时,感应折射率的函数表达式,可以看到与y方向加电场时十分类似。3.4 位相差与相对透射率当光束以任意角度入射时(设折射角为),还需要考虑到光程的变化:位相差、相对透射率、半波电压的公式只需使用新的光程差即可。5仿真结果与分析1 仿真所用实验装置图P1、P2是两个互相正交的偏振片,铌酸锂晶体置于两偏振片之间,端面与偏振片平行。z轴为光轴,设x方向晶体的宽度为h,y、z方向的尺寸分别为d、L。2 沿光轴条件下

20、铌酸锂晶体的横向电光效应由于沿光轴,变量较少,大多数参数之间是直观的线性关系,因此只仿真分析相对透光强度与电场强度的关系。2.1 z轴传播,或方向加电场2.1.1 仿真所用公式利用铌酸锂晶体的折射率色散公式(Sellmeier方程),在室温下可以由波长推得两个主折射率:感生折射率之差:位相差:相对透射光强:半波电压:令=,可得半波电压U:2.1.2 仿真结果及分析参数设定:% lambda = 632.8nm由图4可以看出,相对透射率与驱动电压之间是正弦平方关系,而晶体的长度与厚度影响了正弦振动的频率。但是在一般的电压范围内,相对透射率仍处在正弦函数前1/4的上升周期,因此晶体的长度越长,厚度

21、越薄,相对透射率就越大,该规律也可以从前3幅子图中明显看出。2.2 y方向传播,z轴加电场2.2.1 仿真所用公式z轴加电场情况下,唯一的区别是感生折射率有所变化,将此条件下的感生折射率之差代入即可:位相差:相对透射光强:半波电压略。2.2.2 仿真结果及分析参数设定:% lambda = 632.8nm; z轴加电场时函数式较为复杂,规律不明显。此种情境下,相对透射率随电压振动的周期稍长些,且在常用电压范围内相对透射率随着电场强度的增强处于下降阶段。3 非近轴条件下铌酸锂晶体的横向电光效应这里只分析沿y轴方向加电压的情况,因为沿x轴加电压的情况与其唯一的差别是x-y平面的角度相差45,因而两

22、者的仿真结果相通。同时,数值仿真的结果与具体的参数设置有关,进行数值仿真的目的是找出光电效应的一些参数与入射角的关系,因此这里的仿真只是公式规律的部分展现,与参照的论文等处均有不同。3.1 折射率特性3.1.1 仿真所用公式感生折射率:其中为:3.1.2 仿真结果与分析3.1.2.1 =0,=0,沿光轴入射易知=0,代入公式中:=0,=0是非近轴的特殊情况沿光轴入射,所得结果与直接应用沿光轴条件推导出的公式一致,验证了非近轴部分理论分析与数学推演的正确性。3.1.2.2 =90,任意此时=0:此时光线贴着晶体表面入射。容易看出,y方向的折射率公式与沿光轴入射时略有不同,电场强度前的符号反号,不

23、再仿真分析。x方向则变得较为复杂,因此需要通过数值仿真观察其规律。取= 632.8nm,由折射率色散公式可以得到。可见,随着电场强度的增加,感生折射率近似线性减小;随着入射角的增加,线性减小的系数(即图中曲线的斜率)减小。当角度较大或较小时(0与/2附近),曲线整体斜率受角度影响较小,当角度在/4附近时,随着角度的变化,曲线整体斜率变化较大。3.1.2.3 =0,任意此时=0:此时光线在x-z平面内射入晶体,取= 632.8nm,由折射率色散公式可以得到。随着电场强度增大,感生折射率近似线性增加。随着入射角的增大(从0到/2),线性增加的斜率渐渐减小,同时在/4附近时,斜率随着角度改变变化得更

24、快,这点与4.1.2.3中的规律一致。3.1.2.4 、取任意角从公式中可以看出,感生折射率与入射角、之间是非线性关系,不具有普遍性的规律。因此这里取几个特殊的角度,尽量使数值仿真更具有代表性。角度参数设置为在=30,45,60情境下,取一系列值。=30=45=60由仿真结果可知,感生折射率与角度不是线性关系。当角度较小时,随着电场的增强以不同方式增长,则以不同的方式减小;当角度较大时,情况就变得恰好相反,随着电场的增强以不同方式减小,则以不同的方式变大。角度则影响折射率随电场强度变化的速度(即曲线的整体斜率),整体规律是角度越大则曲线的整体斜率越小,且角度越接近45附近对曲线整体斜率的影响越

25、大,这两点对于两个主折射率是一致的。在=60时,还可以观察到一个较为奇特的现象:折射率发生了跳变。为了分析该现象,对折射率的幂函数表达式的跟进行研究,仿真绘图如下:可见跟也出现了跳变。再看电场强度的取值方式:Ey = 1:1e4:5*1e9,可见这是由于电场强度步长过长(相邻坐标之间相差1000V)导致,这也说明在1.315e9V附近,电场强度对折射率的影响格外大。总的趋势是,当电场强度在合理范围内时(10的9次方以内),角度越接近90,两个主轴折射率的差别就越小,电光效应就越弱,这点将在下面的位相差仿真中更加详细地讨论。3.2 位相差与相对透射率3.2.1 仿真所用公式由于存在入射角,光程差

26、发生变化,真实的光程差为:位相差:相对透射率为:3.2.2 仿真结果与分析借用3.1的仿真,容易求出两主轴折射率,将两折射率代入公式即可求出位相差和相对透射率。要着重注意光以任意角度射入铌酸锂晶体时,实际的光程差也会随着入射角发生变化。3.2.2.1 =0,任意取=632.8nm,同上由铌酸锂晶体的折射率色散公式可以得到不加电场情况下的主折射率;再由入射角、电场强度取值确定偏转角,即可求得感生折射率,接下来即可顺利求出位相差和相对透光率(又是写为相对透射率,指的是同一个参量)。此时光从x-z平面射入晶体。观察图中曲线可知,随着电场强度的增加,位相差近似于线性增加,并且相同情况下,入射角越大,位

27、相差越大,电光效应越明显。同时,随着入射角的增大,位相差随着电场强度增强而增长的速度也越快。在其他情况相同时,电场强度越大,则入射角增大引起的位相差增加也越大。3.2.2.2 =90,任意类似4.2.2.1操作,绘图如下:此时光贴着晶体端面射入晶体中,位相差为负值,但是幅值与=0的情况没有区别,因此位相差、相对透射率与入射角、之间的规律是一样的,不再赘述。由此可以看出,入射角对于晶体的横向电光效应影响更大,这点将在后续仿真中得到验证。3.2.2.3 ,任意、与位相差、相对透射率之间是更加复杂的非线性关系,因此举出较为特殊的角度例子进行数值仿真以大致摸清规律。取=30、45、60,取定时取一系列

28、值,仿真结果如下:=30=45=60一般情况下,随着电场强度的增大,位相差近似线性增加,线性增加的斜率随着入射角的增大而增大,相同条件下,入射角越大,位相差越大,入射角影响位相差整体的增长速度。但在较大的情况下,会出现位相差随着电场强度的增大没有明显变化甚至下降的情况,在实际应用中,应该避免这种状况,控制入射角在合适的范围内,或者利用这种反常现象实现特殊应用。同时在较大时,还会出现位相差的跳变(该现象在之前的折射率仿真部分已经加以研究),这是由于电场强度所取的步长较大,也说明在该段电场强度范围内感生折射率对电场强度格外敏感,可以利用这一现象实现某些特殊应用。总的来说,入射角越接近90,位相差越

29、大,横向电光效应越明显。相对透射率随着电场强度的变化近似于正弦振荡,由于光程差变化等带来的影响,振荡并没有严格的周期。随着角度的增加,振荡周期变小,同时电场强度越大,振荡周期也越小。越接近45,振荡周期的变化越剧烈;接近0或者90时,周期性更好。为了更清楚地看到入射角对位相差、相对透光率的影响,接下来采取固定电压、使入射角作为因变量的仿真方法。3.2.2.4 电场强度Ey固定Ey=1e3Ey=1e4从图中可以明显观察出来,入射角对电光效应的影响远大于入射角。位相差则随着入射角的的增大而逐渐非线性地增大,同时相对透光率随着的增大近似正弦振荡,在取特定的几个角度时,相对透光率达到极大值,另外一些特

30、殊点则使T达到极小值。对于入射角,当电场较弱时,入射角对位相差、相对透光率基本没有影响,但是当电场强度增强时,的作用就逐渐表现出来,但是与入射角相比影响很弱。3.2.2.5 位相差的增量为了更好地发现电光效应与入射角、之间的关系,将感生折射率与未加电场时的折射率相减,得到在电场作用下位相差的增量与入射角的关系。Ey=1e4如图,当考察位相差的增量时(与未加电场时作比较得到的增量值),可以发现入射角起着更加显著的作用。位相差增量的幅值随着的增大非线性地增加(注意图中的数值均为负的),而入射角对位相差的增量基本没有影响。但是在实际应用中我们需要的是位相差的实际值,是不加电场时位相差的基准与位相差增

31、量的相加所得,同时由于位相差增量为负,基准值为正,因此按绝对值考虑,增量幅值与最终的位相差幅值之间联系不够直接,因此这样的考察实际意义不大。3.3 半波电压3.3.1 仿真所用公式3.3.2 仿真结果与分析半波电压的仿真直接利用位相差即可。根据4.2.2中的仿真结果,利用位相差与电场强度的关系图,观察Dphase=的直线与图中曲线的交点即可。为了更好地观察,将Ey的范围取小一些,仿真作图如下。半波电压与入射角的关系如图易得,入射角越大,半波电压越小,且随着入射角的增大,半波电压较小的幅度也变大。下面观察半波电压与入射角的关系:与上述规律相反,入射角越小,半波电压就越小,同时随着入射角的减小,半

32、波电压减小的幅度也在缩减。另外观察入射角、的范围可以发现,入射角对半波电压的影响力远大于入射角。同时,当入射角一定,不同时,可以发现不加电场时位相差也不同;而当入射角一定,不同时,不加电场时位相差一致,这也印证了入射角对电光效应的影响更大。6实验总结1 基础知识铌酸锂晶体的横向电光效应所涉及的基础知识较少,只需要对光的偏振、双折射现象进行复习即可大概理解该课题的理论基础。晶体学知识则是该课题在理论方面的最根本基础,由于课题的理论分析更多地集中在对折射率椭球方程的数学求解上,因此对晶体学的知识需求不大。2 理论分析在完成本课题的理论分析时,主要借鉴了各种文章、论文的思路,从其中提出的解题思想入手

33、,结合文章中推导出的结果,利用已有的立体几何和微积分知识即可充分理解其中奥妙。理论分析的难点在于如何进行近似。若不近似而一心得到没有误差的理论公式,将使计算非常麻烦,对于后续的数值仿真也非常不利;但是如果在不合适的地方进行近似,就会导致结果的误差很大。对于该问题,我的理解是,要盯紧最终结果,抓住近似带来的误差传递对最终结果的影响,就可以抓住时机正确合理地进行近似。而在本次的课题研究中,主要还是参照论文中给出的中间结果来分析如何进行近似,以使自己的理论分析能够与论文的结果保持一致。这也使我认识到,如何进行误差分析、学会合理地进行近似是科学研究中的一个难点,以后需要多加钻研。3 数值仿真及分析数值

34、仿真与分析使用了MATLAB,该部分没有难度,主要是结合分析的需求,尽量以清晰直观的方式将变量之间的关系表达出来,使分析更加轻松,更容易得到充足、正确规律总结。7参考文献 陈险峰. 非线性光学研究前沿. 上海交通大学出版社, 2014.2 徐荣甫, 刘敬海. 激光器件与技术教程. 北京工业出版社, 1986.3 张克从, 王希敏. 非线性光学晶体材料科学. 科学出版社, 2005.4 龙槐生. 光的偏振及应用. 机械工业出版社, 1989.5 宋敏, 李洪儒, 陈新睿等. 非近轴光束下铌酸锂晶体的电光效应J. 激光技术, 2014, 38(2):149-154.6 苏世达, 万玲玉, 周煜. 任意传播方向下铌酸锂晶体的横向电光效应研究. 光学学报, 2010, 30(10):2972-2977.7 宋哲, 刘立人, 周煜. 入射光偏振方向对LiNbO3晶体近光轴电光调制的影响. 中国激光, 2005, 32(3):319-322.8 中国科学院上海光机所晶体调制组. 近光轴电光调制和单块晶体激光Q开关J. 激光, 1975, 2(2):8-19.36 / 36

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服